\boldsymbol{H}
 HAVELLS

Experience the Latest \& Safest in Building Circuit Protection

Havells India Limited is a leading Fast Moving Electrical Goods (FMEG) Company and a major power distribution equipment manufacturer with a strong global presence. Havells enjoys enviable market dominance across a wide spectrum of products, including Industrial \& Domestic Circuit Protection Devices, Cables \& Wires, Motors, Fans, Modular Switches, Home Appliances, Air Conditioners, Electric Water Heaters, Power Capacitors, CFL Lamps, Luminaires for Domestic, Commercial and Industrial Applications.

Today, Havells owns some of the most prestigious brands like Havells, Lloyd, Crabtree, Standard and Promptec. Its network constitutes of 4000 professionals, over 7575 dealers and 40 branches in the country. Our products are available in 40 countries. The company has twelve state-of-the-art manufacturing plants in India located at Haridwar, Baddi, Sahibabad, Faridabad, Assam, Alwar and Neemrana, manufacturing globally acclaimed products, synonymous with excellence and precision in the electrical industry.

The company pioneered the concept of exclusive brand showroom in the electrical industry with 'Havells Galaxy'. Today over 415 Havells Galaxies across the country are helping customers, both domestic and commercial, to choose from a wide variety of products for different applications. Havells became the first FMEG Company to offer door step service via its initiative 'Havells Connect'. Thanks to the quality of products and quicker service, it has minimum customer complaints and highest customer satisfaction.

Today, Havells alongwith its brands, have earned the distinction of being the preferred choice of electrical products for discerning individuals and industrial consumers both in India and abroad. Havells offers same quality products for both Indian and International markets. It is committed to keep powering the world with its state-of-the-art innovations and energy-efficient solutions. Currently over 90\% of its product offerings are energy efficient and manufactured in-house.

Social and environmental responsibility has been at the forefront of Havells Operating Philosophy and as a result the company consistently contributes to socially responsible activities. For instance, the company is providing mid-day meal in government schools in Alwar district, covering more than 57000 students per day. The group company, QRG Healthcare runs a 140 bed hospital in Faridabad. In the past, the company has generously contributed to the society during various national calamities like the Bihar Flood, Tsunami and Kargil National Relief Fund, etc.
The essence of Havells' success lies in the expertise of its fine team of professionals, strong relationships with associates and the ability to adapt quickly \& efficiently, coupled with the vision to always think ahead.

A Billion-Dollar-Plus Fast Moving
Electrical Goods (FMEG) Company

Over 4000 Professionals, over 7575 dealers and 40 branches in the country \& 12 state-of-the-art manufacturing plants in India

A 20000 strong global Distribution Network continuously strives to set new benchmarks in prompt delivery and service to customers

EURO-II

Building Circuit Protection Devices

A
Protection Device
Miniature Circuit Breaker (MCB) p-08
Residual Current Circuit Breaker (RCCB) p-28
Residual Current Circuit Breaker with Overload
\& Short-CircuitProtection (RCBO) p-40
Surge Protection Devices (SPD) p-46
Solutions for downstream protection p-54
O
Control \& Monitoring Device
Isolator p-74
MCB Changeover p-78
Automatic Changeover Devices p-82
Time Switch p-94
Modular Contactors.... p-106
Indicator Light p-130
Photovoltaic Switchgear Device
Photovoltaic Systems in Focus p-132
Photovoltaic Fuse Link \& Fuse Disconnector p-136
Industrial Plug \& Socket
Plug. p-154
Connectors p-155
Wall Mounted Socket p-158
Panel Socket p-159
Interlocking Socket p-162
Plug \& Socket for Reefer Container p-163
Solution with Insulated Plug \& Socket p-164
\square
Distribution Boards
DCORA Distribution Boards p-168
Metalica Distribution Boards p-180
QVE Plus Distribution Boards p-184
Distribution Boards with Lock p-190
Phase Selector Distribution Boards................. p-194
Utility Distribution Boards..... p-202
Designer Distribution Boards p-210
Special Application Distribution Boards....................... p-214
Glossary p-230

EURO-II

Building Circuit Protection Devices

MCB

PRODUCT OVERVIEW

MCB Range
6 A to 63 A - 'B' Curve
0.5 A to 63 A - 'C' Curve
0.5 A to 63 A - 'D' Curve
0.5 A to 63 A for DC Application

Execution
Single Pole (1P), Single Pole \& Neutral (1P+N),
Double Pole (2P), Three Pole (3P),
Three Pole \& Neutral (3P+N) \& Four Pole (4P)
Specification
IS/IEC 60898-1, IEC 60898-2, IEC 60947-2

RCCB Range
16 A, 25 A, 32 A, 40 A \& 63 A - Type 'A'/
Type 'AC'
80 A \& 100 A - Type 'AC'
Execution
Double Pole (2P), Four Pole (4P)
Specification
IS 12640 Part 1
IEC 61008-1 / EN 61008-1

Isolator Range
40A-125A
Execution
Single Pole (1P), Double Pole (2P)
Three Pole (3P), \& Four Pole (4P)
Specification
IS/IEC 60947-3

EURO-II

Protection Devices

Electrical Distribution needs are continuously evolving in residential, commercial and industrial sectors. Improved operational safety, continuity of service, greater convenience and operating cost have assumed a tremendous significance. Miniature Circuit Breakers have been designed to continuously adapt to these changing needs.

Features

- Precise hammer action
- Low power consumption, thus cost effective \& energy saving
- 13 Plates Arc Chute for effective arc quenching
- Dual termination for bus-bar as well as cable connection.
- Easy DIN-Rail extraction
- Energy Limiting Class 3 to ensure low let through energy to limit thermal \& mechanical stress on cables.
- Trip free mechanism : MCB trips even if held in ON position.
- Longer electrical life
- ISI and CE marking. RoHS Complaint, 'Green Product

Range

6 A to 63 A - 'B' Curve
0.5 A to 63 A - 'C' Curve
0.5 A to 63 A - 'D' Curve
0.5 A to 63 A for DC Application

Accessories

- Auxiliary Switch
- Shunt Trip

Execution
Single Pole (1P)
Single Pole \& Neutral ($1 \mathrm{P}+\mathrm{N}$)
Double Pole (2P)
Three Pole (3P)
Three Pole \& Neutral $(3 P+N)$
Four Pole (4P)
Specification
IS/IEC 60898-1
IEC 60898-2 for DC Application
IEC 60947-2 for Industrial Application

Safety Terminals
To avoid improper cable termination, the safety terminals guide the cable towards the cage terminal for systematic termination

Bi Stable Clip
Every device is provided with a dual position DIN rail clip, so it becomes much easier to change a device from a device bank connected to a bus-bar, without disturbing the existing wiring

Large Cable Terminals
Suitable for copper and aluminum cables, these terminals are compatible with cables upto $35 \mathrm{~mm}^{2}$ cross section area

Cooler Operation
Grooves provided on outer body, so that when individual poles are placed adjacent to each other in a distribution board it forms a very effective channel for better air circulation, resulting into a cooler operation

Construction

Miniature Circuit Breakers have precisely formed moulded case \& cover of flame retardant high strength thermo-plastic material having high melting point, low water absorption, high dielectric strength and temperature withstand.

The Switching Mechanism is independent, manual and trip free, i.e., the breaker trips internally even if the operating knob is held in ON position.

The Contact Mechanism comprises of fixed \& moving contacts specially designed for reliability, long life and anti-weld properties. The Arc Extinguishing Device comprises of 13 plates arc chute. The arc under the influence of the magnetic field and arc guide is moved into the arc chute where it is rapidly split and quenched. The tripping mechanism is Thermal Magnetic Type.

Thermal Operation

The thermal operation provides protection from moderate overloads. Under overload condition, a thermo-metallic element (bimetallic strip) deflects until it operates a latching mechanism allowing the main contacts to open.

Magnetic Operation

In magnetic operation, large overloads or short circuit current actuates a solenoid causing a plunger to strike the latching mechanism rapidly opening the main contacts.

Internal View

Dimensions (in mm)

Characteristics Curves

As per	Thermal Tripping			Magnetic Tripping		
	No tripping	Tripping	Time	Hold	Trip	Time
$\begin{aligned} & \text { IS/IEC } \\ & \text { 60898-1 } \end{aligned}$	Current	Current	Limits	Current	Current	Limits
	I_{1}	I_{2}	t	I_{4}	I_{5}	t
B Curve	$1.13 \times \mathrm{I}_{\mathrm{n}}$		$\geq 1 \mathrm{~h}$	3×1 n		$\geq 0.1 \mathrm{~s}$
		$1.45 \times \mathrm{I}_{\mathrm{n}}$	$<1 \mathrm{~h}$		5×1 n	<0.1 s
C Curve	$1.13 \times \mathrm{I}_{\mathrm{n}}$		$\geq 1 \mathrm{~h}$	5×1 n		$\geq 0.1 \mathrm{~s}$
		$1.45 \times \mathrm{I}_{\mathrm{n}}$	$<1 \mathrm{~h}$		$10 \times 1{ }_{n}$	<0.1 s
D Curve	$1.13 \times \mathrm{I}_{\mathrm{n}}$		$\geq 1 \mathrm{~h}$	$10 \times 1{ }_{n}$		$\geq 0.1 \mathrm{~s}$
		$1.45 \times \mathrm{I}_{\mathrm{n}}$	$<1 \mathrm{~h}$		$20 \times 1{ }_{n}$	<0.1 s
$\mathrm{I}_{3}=2.55 \times \mathrm{l}$	$1 \mathrm{~s}<\mathrm{t}<60 \mathrm{~s}$ for $\mathrm{I}_{\mathrm{n}}(\mathrm{ln} \leq 32 \mathrm{~A})$					
	$1 \mathrm{~s}<\mathrm{t}<120 \mathrm{~s}$ for $\mathrm{I}_{\mathrm{n}}(\mathrm{ln}>32 \mathrm{~A})$					

Tripping Characteristics

Based on the Tripping Characteristics, MCBs are available in 'B', 'C' and 'D' curve to suit different types of applications.
'B' Curve: for protection of electrical circuits with equipment that does not cause surge current (lighting and distribution circuits). Short circuit release is set to (3-5) In
'C' Curve: for protection of electrical circuits with equipment that causes surge current (inductive loads and motor circuits).
Short circuit release is set to (5-10) In
'D' Curve: for protection of electrical circuits which causes high inrush current, typically 12-15 times the thermal rated current (transformers, X-ray machines etc.) Short circuit release is set to (10-20) In

Current Limiting Design

In a current limiting breaker, the tripping \& arc control mechanism are so designed that under short circuit conditions, the contacts are physically separated and the electrodynamics forces set up by fault current, assist the extinction in less than half cycle.
The figure shows the current limiting effect of circuit breakers.
Fault Traces for Voltage \& Current
$0=$ Point of fault initiation
$t_{x}=$ Contact opening time (i.e., creation of arc)
$\mathrm{t}_{1}=$ Current / Voltage peak (i.e., current limitation)
$\mathrm{t}_{2}=$ Time to total extinction of arc (i.e., complete shutdown of fault current)

Hammer Trip Mechanism

Current Limiting design in itself may not fulfil the requirement of quick breaking (instantaneous action) mainly due to inertia of the Latch mechanism and interconnected sequence of operations.

A Hammer directly connected to the plunger strikes the moving contact arm with a force proportional to the peak current there by forcibly separating the moving contact from the fixed contact much before the latch mechanism operates. This further reduces the opening time of the circuit breaker.

Ambient Temperature Compensation / Diversity Factor Chart Maximum Permissible Rated Current (K_{1} Factor)

Graph 1

Calculation $\quad \mathrm{I}_{\mathrm{n}} / \mathrm{MCB}=\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{I}_{\mathrm{n}}$
Example $\quad 4 \mathrm{MCBs}$ with $\mathrm{I}_{\mathrm{n}}=10 \mathrm{~A}$, and the amb. temp. is $50^{\circ} \mathrm{C}$ kept with no gap in between

Solution
$K_{1}=0.89$ (from graph 1)
$\mathrm{K}_{2}=0.78$ (from graph 2)
$\mathrm{I}_{\mathrm{n}} /$ pole $=0.89 \times 0.78 \times 10=6.94 \mathrm{~A}$

Diversity Factor (K_{2} Factor)

Graph 2

Effect Of Frequency Variation

MCBs are designed to operate at AC frequency $50 / 60 \mathrm{~Hz}$. However, MCBs specially suitable for DC applications and for frequencies upto 400 Hz can be supplied on request.

These can be used on different frequencies in supply from $50-60 \mathrm{~Hz}$ without any deration.

For higher frequencies, normal MCBs can be used with a multiplication factor which shall only affect its magnetic trip current.

Supply	AC			DC
Frequency	100 Hz	200 Hz	400 Hz	
Multiplication Factor	1.1	1.2	1.5	1.5

Energy Limiting Class 3

MCBs are designed to have low-let through energy during faults, thus ensuring a better protection of cables and equipment.

Maximum Backup Protection

At site, no. of MCBs are used for outgoing connection. To protect the MCBs under short circuit (higher breaking capacity), we need to put fuses in the incoming side. The current rating of fuses should not be more than the values given in the table.

MCB Current Rating	Backup Fuse Rating
1 A	25 A
2 A	35 A
4 A	50 A
6 A	80 A
$10-63 \mathrm{~A}$	100 A

Cold Resistance \& Power Loss Details
The power loss value declared are at rated current.

Rated Current $I_{n}(A)$	Cold Resistance R_{1} $(\mathrm{~m} \Omega)$	Power Loss per Pole $P_{v}(W)$
0.5	3100.00	0.8
1	860.80	1.0
2	280.00	1.2
4	70.00	1.2
6	25.00	1.3
10	11.68	1.4
13	10.10	1.6
16	8.00	2.2
20	4.50	2.3
25	3.78	3.1
32	2.57	3.3
40	1.94	3.6
63	1.30	6.2

Remarks:- Tolerance $\pm 5 \%$

DC Application

MCBs for DC application are specially designed to meet tough arc quenching conditions. While selecting circuit breaker for DC applications following parameters have to be taken into consideration.

Normal Circuit Currents

The rating and normal running temperature of the MCB are unaffected by DC. The MCB can be selected using the thermal section of the standard time / current curves .

Magnetic tripping on DC is different from the equivalent AC by a peak factor of 1.4
ie., for 'B’ curve AC MCB, $=(3-5)_{n}$ magnetic range
for DC MCB, magnetic range

$$
=\left.1.4(3-5)\right|_{n}=\left.(4-7)\right|_{n}
$$

for 'C' curve AC MCB, magnetic range

$$
=\left.(5-10)\right|_{n}
$$ for DC MCB, magnetic range

$$
=1.4(5-10) \|_{n}=(7-14)_{n}
$$

Short Circuit Currents

The maximum short circuit current possible on a DC system is determined by the voltage of the battery and the total internal resistance of the cells.
It is given by Ohm's law : $l_{s c}=\mathrm{Vb} / \mathrm{Rb}$
Where, $I_{s c}$ is the Short Circuit Current
V_{b} is the voltage of the battery (with 100% charged battery)
R_{b} is the internal resistance of the battery cells
(this is usually stated by the manufacturer)

Circuit Time Constant

The time constant is given by : L/R = 15 ms max where L is the inductance of the circuit

R is The Resistance Of The Circuit

The time constant is usually given in milliseconds (ms.). Ideally, DC circuits would be mainly resistive (i.e. a low number), as inductive circuits produce a back emf when the current suddenly falls. This in turn tends to prolong arcing during switching operations, and so reduce contact life.

Circuit Voltage

The voltage of the circuit is dependent upon the power supply. The lower the voltage the easier switching operations will be, but the voltage makes no difference to the running of the MCBs.
Contact life can be significantly increased by reducing the voltage, drop across each pole. This can be achieved by wiring poles in series.

Technical data

Correct polarity connections for DC MCBs

- Connection diagram

Standard Conformity					IS/IEC 60947-2
Rated Current (In)	V	$0.5-63$			
Rated Voltage (Ue)		220			
No. of Poles (Execution)	1P, 2P				
Rated Short Circuit Breaking Capacity	KA	3			

[^0]Shunt Trip

Attachment Used For Remote Tripping		
Standard Conformity	IS / IEC 60947-3	
Coil Consumption	6 VA	
Rated	(ac) (Ue)	
Voltage	(dc) (Ue)	
Frequency	240 V	
Operating Voltage Range	50 Hz	
Electrical Endurance (No. of operations)	$70 \%-110 \%$ of rated voltage	
Terminal Capacity (Max)	$35 \mathrm{~mm}^{2}$	
Protection Class	IP 20 as per IS 2147 \& IEC 60529	
Mounting	Right side of MCB (Factory assembled)	

Shunt Trip Coil

1. To trip the Circuit Breaker through Shunt Trip Coil, 70% to 110% of the rated voltage is to be applied across D1 \& D2.
2. The Shunt Trip coil is supplied for a short time rated voltage and it trips the breaker instantaneously. (i.e., continuous duty not required).

Shunt Trip Connection Diagram

Discrimination Data

MCB Downstream C curve	MCB Upstream C Curves								
	10 A	13 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A
0.5 A to 5 A	50	65	80	100	125	160	200	250	315
6 A		65	80	100	125	160	200	250	315
10 A				100	125	160	200	250	315
13 A					125	160	200	250	315
16 A						160	200	250	315
20 A							200	250	315
25 A								250	315
32 A									315
40 A									
50 A									

MCB Downstream	MCB Upstream B Curves									
B curve	6 A	10 A	13 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A
0.5 A to 5 A		30	39	48	60	75	96	120	150	189
6 A		30	39	48	60	75	96	120	150	189
10 A				48	60	75	96	120	150	189
13 A					60	75	96	120	150	189
16 A						75	96	120	150	189
20 A							96	120	150	189
25 A								120	150	189
32 A										189

MCB Dow	nstrea		MCCB Upstream																		
C curve	16 A	20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A	200 A	250 A	320 A	400 A	500 A	630 A	800 A	1000	50	600 A
0.5 to 6 A	1100	1200	1400	1700	2000	2500	3400	4800	5800	6700	T	T	T	T	T	T	T	T	T	T	T
10 A	-	1100	1200	1400	1700	2100	2500	3000	3500	4300	T	T	T	T	T	T	T	T	T	T	T
16 A	-	-	-	1300	1600	1900	2100	2400	2700	3200	8300	T	T	T	T	T	T	T	T	T	T
20 A	-	-	-	-	1600	1900	2100	2400	2700	2500	8300	T	T	T	T	T	T	T	T	T	T
25 A	-	-	-	-	-	1700	1800	2000	2200	2500	5400	8700	T	T	T	T	T	T	T	T	T
32 A	-	-	-	-	-	-	1800	2000	2200	2500	5400	8700	T	T	T	T	T	T	T	T	T
40 A	-	-	-	-	-	-	-	1500	1700	2000	4300	7000	T	T	T	T	T	T	T	T	T
50 A	-	-	-	-	-	-	-	-	1300	1500	3600	5900	9000	T	T	T	T	T	T	T	T
63 A	-	-	-	-	-	-	-	-	-	1100	2800	5200	8200	T	T	T	T	T	T	T	T

Prospective Fault Levels to which selectivity is achieved ($T=$ Total Selectivity)

Discrimination With Fuses
HRC Fuse Upstream Type gG

MCBs Downstream	HRC Fuse Link Upstream									
	20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
0.5 A to 6 A	700	850	960	1200	1350	1750	2800	4500	5200	6000
10 A		700	960	1200	1350	1750	2800	4500	5200	6000
13 A			850	1200	1200	1750	2800	4500	5200	6000
16 A				960	1100	1500	2500	3200	5200	6000
20 A					1100	1500	2500	3200	4500	5200
25 A					960	1350	2000	3200	4500	5200
32 A						1200	1750	2800	4500	5200
40 A							1750	2800	4500	5200
50 A								2500	3200	4500
63 A									3200	4500

MCB Selection Chart For Household Applications

Appliances	Capacity / W (Load) (240 V 1 phase)	Current Rating of MCB	Type of MCB
Air Conditioner	3.5 kW (1.0 Ton)	$10 \mathrm{~A}^{*}$	"C" series
	5.28 kW (1.5 Ton)	$16 \mathrm{~A}^{*}$	"C" series
	7.03 kW (2.0 Ton)	$20 A^{*}$	"C" series
Refrigerator	165 L (litres)	$3 A^{*}$	"C" series
	350 L (litres)	$4 A^{*}$	"C" series
Oven cum Griller	4500 W	32 A	"B" series
	1750 W	10 A	"B" series
Oven only Hot Plate only Room Heater	750 W	6 A	" ${ }^{\text {" }}$ " series
	2000 W	10 A	" ${ }^{\text {" }}$ " series
	1000 W	6 A	"B" series
	2000 W	10 A	"B" series
Washing Machine	300 W	2 A	"C" series
Washing Machine (with heater)	1300 W	8 A	"C" series
(storage/instant)	1000 W	6 A	"B" series
	2000 W	10 A	"B" series
	3000 W	16 A	"B" series
	6000 W	32 A	"B" series
Electric iron	750 W	6 A	"B" series
	1250 W	8 A	"B" series
(2 slices)	1200 W	8 A	"B" series
Electric Kettle	1500 W	10 A	"B" series

* It may vary from manufacturer to manufacturer. Please check before installation.

Rating Of MCBs For Specified No. of Fittings ("B" Series MCBs)

Lamp (W)	Number of Lamps	Rating (A)
	8	1 A
	12	1.5 A
40 W	2	0.5 A
	10	2 A
	12	2.5 A
60 W	1	0.5 A
	4	1.5 A
	8	3 A
80 W	12	4 A
	1	0.5 A
	2	1 A
100 W	5	2 A
	8	4 A
	12	5 A

[^1]MCB Selection Chart For Motor Protection

S. No.	kW	HP	1 Phase 230 V DOL Starting		3 Phase 400 V DOL Starting		3 Phase 400 V Assisted Starting Star Delta		
			Full Load Current	MCB Selection	Full Load Current	MCB Selection	Full Load Current		
1	0.18	0.24	2.8	10	0.9	2	-	-	-
2	0.25	0.34	3.2	10	1.2	2	-	-	-
3	0.37	0.50	3.5	10	1.2	2	-	-	-
4	0.55	0.74	4.8	16	1.8	3	-	-	-
5	0.75	1.01	6.2	20	2.0	3	-	-	-
6	1.1	1.47	8.7	25	2.6	6	-	-	-
7	1.5	2.01	11.8	32	3.5	10	-	-	-
8	2.2	2.95	17.5	50	4.4	10	-	-	-
9	3	4.02	20.0	63	6.3	16	6.3	16	10
10	3.75	5.03	24.0	80	8.2	20	8.2	20	10
11	5.5	7.37	26.0	80	11.2	25	11.2	32	16
12	7.5	10.05	47.0	125	14.4	40	14.4	40	25
13	10	13.40	-	-	21.0	50	21.0	50	32
14	15	20.11	-	-	27.0	100	27.0	63	40
15	18.5	24.80	-	-	32.0	125	32.0	-	50
16	22	29.49	-	-	38.0	125	38.0	-	63
17	30	40.21	-	-	51.0	125	51.0	-	63

Calculation Formulae :
$\begin{array}{ll}\text { Incomer Current Rating, For Single Phase: } & \frac{\text { Total Load in Ws }}{240 \mathrm{~V}} \\ \text { Incomer Current Rating, For Three Phase: } & \frac{\text { Total Load in Ws }}{\sqrt{3} \times 240 \mathrm{~V}}\end{array}$
"C" series MCB is used for all Motor Applications
Note: One lighting circuit can have up to 800 W or up to 10 lighting points
One power circuit can have up to 2000 W or 1 power points

'B' Series SP MCB

(In accordance with IS/IEC 60898-1) $240 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for lighting and other domestic loads.

| Rating | Std. / Master
 Packing
 (No. of Unit/s) | SP Cat. No. |
| :--- | :---: | :---: | :---: |
| 6 A-32 A | 12 N | DHMGBSPF006-032 |
| 40 A-63 A | 12 N | DHMGBSPF040-063 |

'C' Series MCB

'C' Series SP MCB
(In accordance with IS/IEC 60898-1) $240 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for Motor and other Inductive loads.

Rating	Std. / Master Packing (No. of Unit/s)	SP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	12 N	DHMGCSPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	12 N	DHMGCSPF006-032
40 A	12 N	DHMGCSPF040
50 A	12 N	DHMGCSPF050
63 A	12 N	DHMGCSPF063

'C’ Series SPN MCB
(In accordance with IS/IEC 60898-1) $240 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for Motor and other Inductive loads.

Rating	Std. / Master Packing (No. of Unit/s)	SPN Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	6 N	DHMGCSNF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	6 N	DHMGCSNF006-032
40 A	6 N	DHMGCSNF040
50 A	6 N	DHMGCSNF050
63 A	6 N	DHMGCSNF063

'C' Series DP MCB

(In accordance with IS/IEC 60898-1) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for Motor and other Inductive loads.

Rating	Std. / Master Packing (No. of Unit/s)	DP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	6 N	DHMGCDPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	6 N	DHMGCDPF006-032
40 A	6 N	DHMGCDPF040
50 A	6 N	DHMGCDPF050
63 A	6 N	DHMGCDPF063

'C' Series TP MCB
(In accordance with IS/IEC 60898-1) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for Motor and other Inductive loads.

Rating	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	4 N	DHMGCTPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	4 N	DHMGCTPF006-032
40 A	4 N	DHMGCTPF040
50 A	4 N	DHMGCTPF050
63 A	4 N	DHMGCTPF063

'C' Series TPN MCB
(In accordance with IS/IEC 60898-1) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for Motor and other Inductive loads.

Rating	Std. / Master Packing (No. of Unit/s)	TPN Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	3 N	DHMGCTNF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	3 N	DHMGCTNF006-032
40 A	3 N	DHMGCTNF040
50 A	3 N	DHMGCTNF050
63 A	3 N	DHMGCTNF063

'C' Series FP MCB

(In accordance with IS/IEC 60898-1) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for Motor and other Inductive loads.

Rating	Std. / Master Packing (No. of Unit/s)	FP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	3 N	DHMGCFPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	3 N	DHMGCFPF006-032
40 A	3 N	DHMGCFPF040
50 A	3 N	DHMGCFPF050
63 A	3 N	DHMGCFPF063

‘D’ Series SP MCB
(In accordance with IEC 60898-1) 240 V/415 V, 50 Hz Suitable for high inrush current loads.

Rating	Std. / Master Packing (No. of Unit/s)	SP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	12 N	DHMGDSPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	12 N	DHMGDSPF006-032
40 A	12 N	DHMGDSPF040
50 A	12 N	DHMGDSPF050
63 A	12 N	DHMGDSPF063

'D’ Series DP MCB
(In accordance with IEC 60898-1) 240 V/415 V, 50 Hz Suitable for high inrush current loads.

Rating	Std. / Master Packing (No. of Unit/s)	DP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	6 N	DHMGDDPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	6 N	DHMGDDPF006-032
40 A	6 N	DHMGDDPF040
50 A	6 N	DHMGDDPF050
63 A	6 N	DHMGDDPF063

'D' Series TP MCB
(In accordance with IEC 60898-1) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}$ Suitable for high inrush current loads.

Rating	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
0.5 A-5 A	4 N	DHMGDTPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	4 N	DHMGDTPF006-032
40 A	4 N	DHMGDTPF040
50 A	4 N	DHMGDTPF050
63 A	4 N	DHMGDTPF063

'D' Series FP MCB
(In accordance with IEC 60898-1) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$ Suitable for high inrush current loads.

Rating	Std. / Master Packing (No. of Unit/s)	FP Cat. No.
0.5 A-5 A	3 N	DHMGDFPF0x5-005
$6 \mathrm{~A}-32 \mathrm{~A}$	3 N	DHMGDFPF006-032
40 A	3 N	DHMGDFPF040
50 A	3 N	DHMGDFPF050
63 A	3 N	DHMGDFPF063

'DC' Series SP MCB
For DC Supply, upto 220 V (IS/IEC 60947-2)

Rating	Std. / Master Packing (No. of Unit/s)	SP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	12 N	DHMCESPF0x50013-0050013
$6 \mathrm{~A}-32 \mathrm{~A}$	12 N	DHMCESPF0060013-0320013
40 A	12 N	DHMCESPF0400013
50 A	12 N	DHMCESPF0500013
63 A	12 N	DHMCESPF0630013

'DC' Series DP MCB
For DC Supply, up to 220 V (IS/IEC 60947-2)

Rating	Std. / Master Packing (No. of Unit/s)	DP Cat. No.
$0.5 \mathrm{~A}-5 \mathrm{~A}$	6 N	DHMCEDPF0x50013-0050013
$6 \mathrm{~A}-32 \mathrm{~A}$	6 N	DHMCEDPF0060013-0350013
40 A	6 N	DHMCEDPF0400013
50 A	6 N	DHMCEDPF0500013
63 A	6 N	DHMCEDPF0630013

'DC' Series Railway MCB
For Railway Applications (with extended terminals \& mounting brackets)

Rating	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
0.5 A-5 A	12 N	DHMCRSPF0x50013-0050013
$6 \mathrm{~A}-35 \mathrm{~A}$	12 N	DHMCRSPF0060013-0350013
40 A	12 N	DHMCRSPF0400013
50 A	12 N	DHMCRSPF0500013
60 A	12 N	DHMCRSPF0600013

Suitable for Railway application as per RDSO, Drg. SKEL. 3700 alt-1 and specification No. SPEC/E-12/1/04 (with extended terminals and mounting brackets)

EURO-II

Protection Devices

MINIATURE CIRCUIT
BREAKER (80 A-125 A)

Electrical Distribution needs are continuously evolving in residential, commercial and industrial sectors. Improved operational safety, continuity of service, greater convenience and operating cost have assumed a tremendous significance. Miniature Circuit Breakers have been designed to continuously adopt to these changing needs.

Features

- Trip Free mechanism
- Positive Contact Indication
- Thermal and Magnetic trip function
- Current Limiting design for short circuit fault protection
- CE marking. RoHS Complaint, 'Green Product'

Range

80 A, 100 A \& 125 A - 'C' Curve
Execution
Single Pole (1P), Double Pole (2P)
Three Pole (3P), Four Pole (4P)
Specification
IS/IEC 60947-2

Positive Contact Indication It clearly indicates true contact position through Flag Indication (Red-ON, Green-OFF) thus enhancing safety

Large Cable Terminals
Suitable for copper and aluminum cables, these terminals are compatible with cables upto $35 \mathrm{~mm}^{2}$ cross section area

Technical Specification		
Standard Conformity		IS/IEC 60947-2
Type / Series		C
Rated Current (In)		$80 \mathrm{~A}-125 \mathrm{~A}^{*}$
Rated Voltage (Ue)		$240 \mathrm{~V} \sim 1415 \mathrm{~V} \sim$
Rated Insulation Voltage (Ui)		690 V
Rated Impulse Withstand Voltage (Uimp)		6 kV
Rated Frequency		$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
No. of Poles		1P, 2P, 3P, 4P**
Rated Short Circuit Breaking Capacity (Icn)		10 kA
Rated Ultimate Short Circuit Breaking Capacity (Icu)		10 kA
Rated Service Short Circuit Breaking Capacity (Ics)		75\% of Icu
Magnetic Release Setting (In)		(5 A-10 A)
Mechanical Life	No. of Operations	20000
Electrical Life	No. of Operations	5000
Ambient Temperature		$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Terminal Capacity		$50 \mathrm{~mm}^{2}$
Tightening Torque		3.5 Nm
Protection Class		IP 20
Installation Position		Vertical / Horizontal
Mounting		Clip on DIN Rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)

* Current Ratings: $80 \mathrm{~A}, 100 \mathrm{~A}, 125 \mathrm{~A}$
** 1P Single Pole 3P Three Pole 2P Double Pole 4P Four Pole

Dimensions (in mm)

Higher Rating SP MCB (80 A-125 A) 'C’ Series,
(In accordance with IS/IEC 60947-2) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$

Rating	Std. / Master Packing (No. of Unit/s)	SP Cat. No.
80 A	6 N	DHMJCSPF080
100 A	6 N	DHMJCSPF100
125 A	6 N	DHMJCSPF125

Higher Rating DP MCB (80 A-125 A) 'C’ Series,
(In accordance with IS/IEC 60947-2) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$

Rating	Std. / Master Packing (No. of Unit/s)	DP Cat. No.
80 A	3 N	DHMJCDPF080
100 A	3 N	DHMJCDPF100
125 A	3 N	DHMJCDPF125

Higher Rating TP MCB (80 A-125 A) 'C' Series,
(In accordance with IS/IEC 60947-2) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 10 \mathrm{kA}$

Rating	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
80 A	2 N	DHMJCTPF080
100 A	2 N	DHMJCTPF100
125 A	2 N	DHMJCTPF125

EURO-II

Protection Devices

${ }^{\circ}$
 $0 \cdot 0^{\circ} \cdot \circ^{\circ}$

RESIDUAL CURRENT
CIRCUIT BREAKER
(16 A-63 A)

The flow of current through electrical facilities always involves risks. Poorly insulated equipment, faulty wires and incorrect use of an electrical device can cause current to flow through the wrong path (i.e. through the insulation/human body) to the earth.

RCCB (also popularly known as ELCB) is a mechanical switching device designed to make, carry and break currents under normal service conditions and to cause the opening of the contacts when the leakage current attains a given value under specified conditions. Havells offers a wide range of RCCBs for protecting human life against fatal electric shocks as well as for providing protection against fire caused by earth faults.

Features

- Type AC and Type A RCCB
- Simple and Robust operating mechanism
- Rotary handle with ON/OFF indication in FP
- Dual termination for Bus Bar as well as cable connection
- Advance Neutral
- Test button for regular inspection
- Conditional Short-circuit current capacity 10 kA
- ISI and CE marking. RoHS Complaint, 'Green Product'

Range
16A-63A
Sensitivity
$30 \mathrm{~mA}, 100 \mathrm{~mA}$ \& 300 mA

Execution
Double Pole (2P)
Four Pole (4P)
Specification
IS 12640 Part 1/ IEC 61008-1
[EN 61008-1

Safety Terminals
To avoid improper cable termination, the safety terminals guide the cable towards the cage terminal for systematic termination

Large Cable Terminals
Suitable for copper and aluminum cables, these terminals are compatible with cables upto $35 \mathrm{~mm}^{2}$ cross section area

Bi Stable Clip
Every device is provided with a dual position DIN rail clip, so it becomes much easier to change a device from a device bank connected to a bus-bar, without disturbing the existing wiring

Cooler Operation
Grooves provided on outer body, so that when individual poles are placed adjacent to each other in a distribution board it forms a very effective channel for better air circulation, resulting into a cooler operation

The use of exposed, substandard, badly wired, wrongly connected or damaged equipment as well as frayed or badly repaired cables reduces the safety of an installation and increases the risk of person receiving an electric shock. RCCBs are electrical devices which afford a very high degree of protection against the risks of electrocution and fire caused by earth faults.

Protection Against Electrocution

Electrocution is a passage of current through human body, which is dangerous. The flow of current through human body affects vital functions of breathing \& heartbeat.
Effect of electric current through human body has been well researched and following chart summarizes the results:
500 mA

However, electrocution should not be viewed in terms of "current" alone, but in terms of "contact voltage". A person gets electrocuted by coming in contact with an object that has a different potential from his/her own. The difference in potential causes the current to flow through the body.
The human body has known limits:

- Under normal dry conditions, voltage limit $=50 \mathrm{~V}$
- In damp surroundings, voltage limit $=25 \mathrm{~V}$

A correctly chosen RCCB can detect small currents flowing to earth and reduces the risk of electrocution.

Protection Against Indirect Contact

Over current protection devices like MCB are unable to act promptly on small earth leakage currents. To comply with wiring regulations,
the earth fault loop impedance in Ohms, multiplied by the rated tripping current of the RCD in amperes must not exceed 50 .

Example

For an RCD with a rated tripping current of 30 mA , the maximum permissible earth fault loop impedance is calculated as follows: Zs $(\max)=50 / I \Delta \mathrm{n}=50 / 0.03=1,666 \Omega$

Protection Against Fire

The majority of fires which occur as a result of faulty wiring are started by current flowing to earth. Fire can be started by fault current of less than 1 ampere. The normal domestic overload protective device such as a fuse or MCB will not detect such a small current. A correctly chosen RCD will detect this fault current and interrupt the supply, hence, reducing the risk of a fire starting.

Rated Tripping Current of the RCD $(I \Delta n)$	Maximum permissible earth fault loop impedance (Ohms)
10 mA	$5,000 \Omega$
30 mA	$1,666 \Omega$
100 mA	500Ω
300 mA	166Ω

Working Principle

The RCCB works on the current balance principle. The supply conductors, i.e. the phases and the neutral, are passed through a toroid and form the primary windings of a current transformer. Its secondary winding is connected to a highly sensitive electromagnetic trip relay, which operates the trip mechanism.

In a healthy circuit, sum of the currents in phases, is equal to the
current in the neutral and the vector sum of all currents is equal to zero. If there is any insulation fault in the current and leakage current flows to earth, the currents do not balance and their vector sum is not equal to zero. This imbalance is detected by the core balanced current transformer, the RCCB is tripped and supply to load is interrupted. The trip mechanism is operated at a residual current between 50-100\% of its rated tripping current.

Zone Physiological Effects
Zone 1 Usually no reactions
Zone 2 Usually no harmful physiological effects
Zone 3 Usually no organic damage to be expected. Likelihood of muscular contraction and difficulty in breathing, reversible disturbances of formation and conduction of impulse in the heart and transient cardiac arrest without ventricular fibrillation increases with current magnitude and time.
Zone 4 In addition to the effects of Zone 3, probability if ventricular fibrillation increased upto 5% (curve C_{2}) upto 50% (curve C_{3}) and above 50\% beyond curve C_{3}. It increases with magnitude and time, and pathophysiological effects such as cardiac arrest, breathing arrest and heavy burns may occur.

Sensitivity Selection

- 30 mA

A 30 mA RCCB will provide a high degree of protection against electrocution in an accidental shock hazard situation. The current flowing through human body could be between 80 mA and 240 mA depending on the resistance of the human body and the voltage across it.

To be within zone of the IEC curve, It is necessary for the RCCB to operate within 50 ms at 240 mA and 150 ms at 80 mA . Both these conditions are satisfied by 30 mA RCCB.
For households, individual outlets, wet areas and temporary installations, RCCB with sensitivity not exceeding 30 mA is advisable.

- 100 mA

A 100 mA RCCB will normally give high degree of protection against electrocution but there is a possibility that the shock current could fall below the tripping level of RCCB. This could occur if additional resistances to that of human body are included in the earth path

Actuation Time Characteristics

The 100 mA RCCB protects against leakage currents and indirect contact with earth loop impedance up to 500 Ohm.

- 300/500 mA

A 300/500 mA RCCB may be used where only fire protection is required. e.g., on lighting circuits, where the risk of electric shock is small. 300/500 mA RCCB will not give any protection against electrocution.

Selection of RCCB Type

RCCB Type AC

AC Type RCCB are used for residual sinusoidal alternating current.

RCCB Type A

A Type RCCB is used for residual sinusoidal alternating currents and residual pulsating direct currents, whether suddenly applied or slowly rising. It can therefore handle the residual current waveforms which can occur in the power supply units of single-phase loads with electronic components (e.g. ECG, dimmer switches). This type of residual current protective device is suitable for electronic equipment with input current circuits 1 to 6 in table 1 .
Suitable RCD - Type

Wiring Diagram

For Single Phase - 2 Wire

For Three Phase - 4 Wire

For Three Phase - 3 Wire

The Havells range of four pole RCCBs can be used to provide residual current protection in 3 phase, 3 wire circuits (no neutral), however a link from the neutral to an incoming should be made on the supply side of the RCCB, to enable the operation of the RCCB.

Technical Specifications	DP	FP
Standard	IS 12640 Part 1/IEC 61008-1/EN 61008-1	IS 12640 Part 1/IEC 61008-1/EN 61008-1
Type	A, AC	A, AC
Rated Current (In)	16 A, 25 A, $32 \mathrm{~A}, 40 \mathrm{~A}, 63 \mathrm{~A}$	$\begin{gathered} 25 \mathrm{~A}, 40 \mathrm{~A}, 63 \mathrm{~A}(\text { Type AC) } \\ 16 \mathrm{~A}, 25 \mathrm{~A}, 32 \mathrm{~A}, 40 \mathrm{~A}, 63 \mathrm{~A}(\text { Type A) } \end{gathered}$
Sensitivity (In)	$30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$ *	$30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$ *
Rated Voltage (Un)	240 V ~	415 V~
Rated Insulation Voltage (Ui)	690 V	690 V
Rated Frequency	50 Hz	50 Hz
Conditional short circuit capacity (Inc)**	10 kA	10 kA
Residual Making Breaking Capacity	500 A or 10 In whichever is greater	500 A or 10 In whichever is greater
Ambient Temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Shock Resistance	40 mm free fall	40 mm free fall
Vibration Resistance	3 G	3 G
Electrical /Mechanical (No. of operations)	10000	10000
Mounting	Din Rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)	Din Rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)
Degree of Protection	IP 20	IP 20
Terminal Capacity (max)	$35 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$

*500 mA is available on request
** In combination with an upstream SCPD (Fuse gL/MCB) of same or higher rating w.r.t. RCCB, to achieve the minimum values of I2t and lp to be withstood by the RCCB (as per IEC)"

Dimensions (in mm)

2 POLE

4 POLE

RCCB - 'AC' Type DP
(In accordance with IS 12640-1 \& IEC 61008-1) $240 \mathrm{~V}, 50 \mathrm{~Hz}$ with 10 kA conditional short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
16 A	DHRGCTDF030016	DHRGCTDF100016	DHRGCTDF300016
25 A	DHRGCTDF030025	DHRGCTDF100025	DHRGCTDF300025
32 A	DHRGCTDF030032	DHRGCTDF100032	DHRGCTDF300032
40 A	DHRGCTDF030040	DHRGCTDF100040	DHRGDTDF300040
63 A	DHRGCTDF030063	DHRGCTDF100063	DHRGCTDF300063

RCCB - ‘AC' Type FP
(In accordance with IS 12640-1 \& IEC 61008-1) $415 \mathrm{~V}, 50 \mathrm{~Hz}$ with 10 kA conditional short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
25 A	DHRGCRFF030025	DHRGCRFF100025	DHRGCRFF300025
40 A	DHRGCRFF030040	DHRGCRFF100040	DHRGCRFF300040
63 A	DHRGCRFF030063	DHRGCRFF100063	DHRGCRFF300063

RCCB - 'A' Type

RCCB - 'A' Type DP
(In accordance with IS 12640-1 \& IEC 61008-1) $240 \mathrm{~V}, 50 \mathrm{~Hz}$ with 10 kA Conditional short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
16 A	DHRMAMDF030016	DHRMAMDF100016	DHRMAMDF300016
25 A	DHRMAMDF030025	DHRMAMDF100025	DHRMAMDF300025
32 A	DHRMAMDF030032	DHRMAMDF100032	DHRMAMDF300032
40 A	DHRMAMDF030040	DHRMAMDF100040	DHRMAMDF300040
63 A	DHRMAMDF030063	DHRMAMDF100063	DHRMAMDF300063

RCCB - 'A' Type FP
(In accordance with IS 12640-1 \& IEC 61008-1) $415 \mathrm{~V}, 50 \mathrm{~Hz}$ with 10 kA Conditional short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
16 A	DHRMAMFF030016	DHRMAMFF100016	DHRMAMFF300016
25 A	DHRMAMFF030025	DHRMAMFF100025	DHRMAMFF300025
32 A	DHRMAMFF030032	DHRMAMFF100032	DHRMAMFF300032
40 A	DHRMAMFF030040	DHRMAMFF100040	DHRMAMFF300040
63 A	DHRMAMFF030063	DHRMAMFF100063	DHRMAMFF300063

EURO-II

Protection Devices

The flow of current through electrical facilities always involves risks. Poorly insulated equipment, faulty wires and incorrect use of an electrical device can cause current to flow through the wrong path (i.e. through the insulation/human body) to the earth.

RCCB (also popularly known as ELCB) is a mechanical switching device designed to make, carry and break currents under normal service conditions and to cause the opening of the contacts when the leakage current attains a given value under specified conditions. Havells offers a wide range of RCCBs for protecting human life against fatal electric shocks as well as for providing protection against fire caused by earth faults.

Features

- Conditional short circuit capacity 10 kA
- Different knob position to indicate whether it is switched by a fault or manually switched OFF (Mid Trip)
- Test button for regular inspection
- Positive contact indication
- Dual termination for simultaneous connection of bus-bars and wires.
- CE marking. RoHS Complaint, 'Green Product'

Range

80 A - 100 A
Sensitivity
$30 \mathrm{~mA}, 100 \mathrm{~mA}$ \&
300 mA

Execution

Double Pole (2P)
Four Pole (4P)
Specification
IS 12640 Part 1/IEC 61008-1
/ EN 61008-1

Mid Trip
Different knob position to indicate whether the device is Switched OFF by a fault or Switched OFF manually

Large Cable Terminals
The terminals are suitable for cables up to $50 \mathrm{~mm}^{2}$ cross section area thus making it suitable for copper and aluminium cables

Positive Contact Indication It clearly indicates true contact position through Flag Indication (Red-ON, Green-OFF) thus enhancing safety

Test Button
Test button for regular inspection/testing

Technical Specification	DP	FP
Specification Reference	IEC 61008-1 \& IS 12640-1	IEC 61008-1 \& IS 12640-1
Type	AC	AC
Rated current (In)	$80 \mathrm{~A}, 100 \mathrm{~A}$	80, 100
Sensitivity (IDn)	$30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$	30, 100, 300
Rated Voltage (Ue)	240 V ~	415 V ~
Rated Insulation voltage (Ui)	690 V	690 V
Rated Frequency	50 Hz	50 Hz
Trip Time		
Conditional short circuit Capacity**	10 kA	10 kA
Residual Making Breaking capacity	$10 \ln (\mathrm{~A})$	$10 \ln (\mathrm{~A})$
Ambient Working Temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Shock Resistance	40 mm free fall	40 mm free fall
Vibration Resistance	5 G	5 G
Electrical Endurance (No. of operations)	>2000	>2000
Mechanical Endurance (No. of operations)	>3000	>3000
Mounting	Din Rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)	Din Rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)
Degree of protection	IP 20	IP 20
Terminals Capacity (Max)	$50 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$

** In combination with an upstream SCPD (Fuse gL/MCB) of same or higher rating w.r.t. RCCB, to achieve the minimum values of I2t and Ip to be withstood by the RCCB (as per IEC)"

Dimensions (in mm)

FP

DP

Higher Rating RCCB

Higher Rating RCCB (80 A-100 A) DP
(In accordance with IS 12640-1 \& IEC 61008-1) $415 \mathrm{~V}, 50 \mathrm{~Hz}$ with 10 kA Conditional short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
80 A	DHRMCMDF030080	DHRMCMDF100080	DHRMCMDF300080
100 A	DHRMCMDF030100	DHRMCMDF100100	DHRMCMDF300100

Higher Rating RCCB (80 A-100 A) FP

(In accordance with IS 12640-1 \& IEC 61008-1) 415 V, 50 Hz with 10 kA Conditional short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
80 A	DHRMCMFF030080	DHRMCMDF100080	DHRMCMDF300080
100 A	DHRMCMFF030100	DHRMCMDF100100	DHRMCMDF300100

EURO-II

Protection Devices

RCBO - residual current CIRCUIT BREAKER WITH OVERLOAD \& SHORT CIRCUIT PROTECTION

Havells New RCBO is a single composite device which provides protection against over currents, short circuit and earth leakage faults. It comes in the same width and profile as that of a standard MCB. It is designed for use in domestic, commercial and industrial distribution systems at the most downstream circuit for ensuring high degree of protection to the user for a particular circuit. In normal use, it is safe to use and free of threat to user as well as to environment.

Features (Electromechanical RCBO)

- Proper cable termination with $25 \mathrm{~mm}^{2}$ slot and safety shutter
- Dual termination on the outgoing terminal
- Field fittable auxiliary contact
- Inscription window with On and Off Indication

Features (Electronic RCBO)

- Pulsating DC protection - Type A
- Discrimination using time delay - Type S RCBO
- Controlled response VD RCBO (Electronic)
- Short-circuit breaking capacity 10 kA Protection in case of N -E faults Higher stacking density in distribution boards
- Enhanced immunity to nuisance tripping
- ISI and CE marking. RoHS Complaint, 'Green Product'

Execution
Electromechanical RCBO (SPN \& 2P RCBOs) Electromechanical RCBO (TPN \& FP RCBOs) Electronic RCBO - A Type (SPN - 2M)
Electronic RCBO - A Type (TPN - 4M)

Specification
IS 12640 : Part 2/IEC 61009-1/EN : 61009-1

Range
32 A, 40 A \& 63 A

6 A to 40 A

Sensitivity
$30 \mathrm{~mA}, 100 \mathrm{~mA} \& 300 \mathrm{~mA}$

Test Button
Test button for regular inspection/testing

Inscription Window
Inscription window with ON \& OFF indication

Proper Cable Termination
Proper cable termination with $25 \mathrm{~mm}^{2}$ slot and safety shutter

Construction

Havells new RCBO is a single composite device which provides protection against over currents, short-circuit and earth leakage faults, it comes in the same width and profile as that of a standard MCB. It is designed for use in domestic, commercial and industrial distribution systems at the most downstream circuit for ensuring high degree of protection to the user for a particular circuit. In normal use, it is safe to use and poses no threat to user as well as to environment.

Features

- Positive contact indication: Red for ON, Green for OFF
- Short circuit breaking capacity 10 kA.
- Large terminal capacity: RCBOs have $35 \mathrm{~mm}^{2}$ for cool running while in operation.
- Protection in case of loss of supply neutral: Even in event of loss of supply neutral, Havells RCBO provides protection against earth faults. The Functional Earth (FE) white color wire connected to earth provides this protection.
- Controlled response \& immunity to nuisance tripping: The trip level and the response time of the Havells VD (Voltage Dependent) RCBO using electronic circuit is set to very precise values and thereby provide greater immunity to nuisance tripping that can be caused by mains borne noise, surge voltages, lighting surges, reactive loads, mains filters, etc.
- Neutral to earth faults: A connection that occurs between N and E on the load side of any RCBO will impact on its performance and cause the trip level to increase. In the case of a N - E fault, the user may have no way of knowing that this fault exists and that the RCBO has been desensitized. Under this condition, the Havells VD RCBO provides a far greater level of protection than a normal VI (Voltage Independent) RCBO.

Aesthetics \& Convenience

- The new module's unique compact construction enables far more devices to be fitted into a distribution board than previously possible, and 2 Module RCBO can simply replace existing MCB 2 pole when upgrading a board.
- High stacking density $=$ smaller chassis \& distribution boards.

Reliability \& Continuity Of Service

- Enhanced discrimination with Havells MCBs
- Retrofits Havells MCBs in distribution boards with no modifications in general
- Robust construction.

Energy Limiting

Havells RCBO meets the requirements for energy let through by IEC \& British Standard for energy limiting class 3.

Additional Range - Type A \& S

Type A - Pulsating DC Protection: Any electrical appliance with power control has the ability to produce earth fault currents with pulsating DC (rectified AC) components. RCBOs that provide this type of protection are referred to as Type A RCBOs.

Standard VI RCBOs do not provide this protection, and are referred to as Type AC RCBOs. Havells VD RCBOs have been specifically designed to provide protection against pulsating DC fault currents.

- Type S- Selective or Time Delay: RCBOs are also divided into two categories determined by their response time to an earth fault current, as follows
- General Type - having a trip time $<300 \mathrm{~ms}$ for fault currents of $\mathrm{I} \Delta \mathrm{n}$ and $<40 \mathrm{~ms}$ for fault currents $>5 \mathrm{I} \Delta \mathrm{n}$.

Technical Information	Electromechanical 2P RCBOs used as (SPN \& 2P RCBOs)
Specification Reference	IS 12640 (Part 2) \& IEC 61009-1

- S Type - having a trip time of 150-500 ms for $1 \Delta n$, and 40-130 $m s$ for $>5 \mathrm{l} \Delta \mathrm{n}$.
($1 \Delta \mathrm{n}$ is the rated residual operating current of the RCBO)
As the name implies, general types are intended for general purpose use. However, S (selective) types are normally used in conjunction with downstream general type RCBOs.

The S type effectively provides discrimination in terms of the response time to earth fault currents for upstream ad downstream RCBOs. For example, when two RCBOs are connected in series the first RCBO will often be an S type.

Electromechanical 4P RCBOs used as (TPN \& FP RCBOs)	Electronic RCBO - A Type (SPN - 2M)	Electronic RCBO - A Type (TPN - 4M)
IS 12640 (Part 2) \& IEC 61009-1	IS 12640 (Part 2) \& IEC 61009-1	IS 12640 (Part 2) \& IEC 61009-1
$32 \mathrm{~A}, 40 \mathrm{~A}$ \& 63 A	$6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 32 \mathrm{~A}, 40 \mathrm{~A}$	$6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 32 \mathrm{~A}, 40 \mathrm{~A}$
$30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$	$30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$	$30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$
'C' curve	'C 'curve	'C 'curve
415 V	240 V ~	415 V
660 V	660 V	660 V
4 kV		
50 Hz	50 Hz	50 Hz
4 Pole	1P+N	$3 \mathrm{P}+\mathrm{N}$
10 kA	10 kA	10 kA
7.5 kA		
630 A for 63 A (500 A-32 A to 40 A)	500 A	500 A
'A' \& 'AC' Type	'A' Type	'A' Type
Pulsating DC		
Panel Board Type (DIN Rail)	Panel Board Type (DIN Rail)	Panel Board Type (DIN Rail)
IP 20	IP 20	IP 20
25 mm²	$35 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$
0.740 kg	0.420 kg	0.84 kg
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
4000 (No. of Operations)	4000 (No. of Operations)	4000 (No. of Operations)
$<40 \mathrm{~ms}$	$<40 \mathrm{~ms}$	<40 ms
40 mm free fall	40 mm free fall	40 mm free fall
3 g	3 g	3 g

	Electromechanical 2P RCBOs used as (SPN \& 2P RCBOs) (In accordance with IS 12640-2 \& IEC 61009-1) 240 V, 50 Hz , with 10 kA short circuit capacity			
*5015	Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
	32 A	DHBMACDP4030032	DHBMACDP4100032	DHBMACDP4300032
	40 A	DHBMACDP4030040	DHBMACDP4100040	DHBMACDP4300040
	63 A	DHBMACDP4030063	DHBMACDP4100063	DHBMACDP4300063

Dimensions (in mm)

RCBO - A Type SPN
RCBO - A Type (SPN - 2M)
(In accordance with IS 12640-2 \& IEC 61009-1) 240 V, 50 Hz , with 10 kA short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
6 A	DHCEACSN2030006	DHCEACSN2100006	DHCEACSN2300006
10 A	DHCEACSN2030010	DHCEACSN2100010	DHCEACSN2300010
16 A	DHCEACSN2030016	DHCEACSN2100016	DHCEACSN2300016
20 A	DHCEACSN2030020	DHCEACSN2100020	DHCEACSN2300020
25 A	DHCEACSN2030025	DHCEACSN2100025	DHCEACSN2300025
32 A	DHCEACSN2030032	DHCEACSN2100032	DHCEACSN2300032
40 A	DHCEACSN2030040	DHCEACSN2100040	DHCEACSN2300040

Dimensions (in mm)

RCBO - A Type (TPN - 4M)
(In accordance with IS 12640-2 \& IEC 61009-1) $415 \mathrm{~V}, 50 \mathrm{~Hz}$, with 10 kA short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
32 A	DHBMACTN8030032	DHBMACTN8100032	DHBMACTN8300032
40 A	DHBMACTN8030040	DHBMACTN8100040	DHBMACTN8300040
63 A	DHBMACTN8030063	DHBMACTN8100063	DHBMACTN8300063

Dimensions (in mm)

RCBO - A Type TPN

RCBO - A Type (TPN - 4M)
(In accordance with IS 12640-2 \& IEC 61009-1) $415 \mathrm{~V}, 50 \mathrm{~Hz}$, with 10 kA short circuit capacity

Rating	30 mA Cat. No.	100 mA Cat. No.	300 mA Cat. No.
6 A	DHCEACTN4030006	DHCEACTN4100006	DHCEACTN4300006
10 A	DHCEACTN4030010	DHCEACTN4100010	DHCEACTN4300010
16 A	DHCEACTN4030016	DHCEACTN4100016	DHCEACTN4300016
20 A	DHCEACTN4030020	DHCEACTN4100020	DHCEACTN4300020
25 A	DHCEACTN4030025	DHCEACTN4100025	DHCEACTN4300025
32 A	DHCEACTN4030032	DHCEACTN4100032	DHCEACTN4300032
40 A	DHCEACTN4030040	DHCEACTN4100040	DHCEACTN4300040

Dimensions (in mm)

EURO-II

Protection Devices

Today's residential, commercial and industrial set-ups are heavily reliant on the continuous and efficient running of electrical and electronic systems. Over-voltage surges are a major cause of failure of these equipment.
Such transient over-voltage surges are often generated due to direct/indirect effects of lightning strikes, switching of utility grid or capacitor banks, electrical accidents, turning on/off of nearby heavy load machines, AC chillers, motors, pumps, circuit-breaker tripping etc.
Surges can cause destruction of electronic circuitry components, logic failures and breakdowns. Loss of operation, loss of service, loss of data, and loss of production can be huge and by far higher than the cost of damaged equipment. Long term exposure to lower level transient over-voltages can also lead to premature ageing of equipment.
Havells offers a comprehensive range of Surge Protection Devices designed to protect your installation by limiting transient over-voltages and diverting surge currents to ground.

Features:

- Visual as well as Remote end-of-life indicators.
- Simple, Professional Installation of Arrester Modules
- High Terminal Capacity - $35 \mathrm{~mm}^{2}$ for Ease of Installation.
- Bi-stable Snap-pusher for Easy Installation and Extractioin from DIN-rail.
- Finger Touch-Proof IP 20.
- TUV Tested and approved. CE compliant.

Range
AC SPD's
Type 1+2
Type 2
DC-SPD's
Type 1+2
Type 2
Dataline SPD
$6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$

Remote Signaling Contact

- Option to remotely monitor the status of the surge protector.
- Simplified cabling thanks to a single terminal for monitoring all poles.

Pluggable Cartridges

- Faulty cartridges can be replaced without changing the entire SPD.
- Cartridges can be replaced with mains voltage ON.
- All cartridges are marked with characteristics for ease of maintenance.

Satisfactory operation
Cartridge must be replaced

End of Life Indicator
Green shows the satisfactory operation and Red indicates that Cartridge must be replaced.

Dedicated Protection of the Neutral
The $1 \mathrm{P}+\mathrm{N}$ and $3 \mathrm{P}+\mathrm{N}$ SPDs with dedicated protection of the neutral pole discharge the common and differential mode overvoltages that may occur in installations with Π and TNS systems, when there is a voltage surge.

Type 1+2 AC Surge Protection Devices

These are very compact SPDs which protect both from overvoltage surges due to direct lightning strikes (10/350 $\mu \mathrm{s}$ waveform) as well as indirect lightning strikes and switching surges ($8 / 20 \mu \mathrm{~s}$ waveform). They are an integrated solution, equivalent to an automatically coordinated Type 1 and Type 2 SPDs.

They are used as the first step of protection in incoming power supply panels and areas with exposure to the atmosphere, where installations are usually provided with an external lightning protection system.

Configuration

SPN, TPN

Specification

IEC 61643-11: 2011, EN 61643-11: 2012

Features

- Tested and approved by TUV.
- High Discharge Current (Imax $50 \mathrm{kA}(\mathrm{L}-\mathrm{N}) 70 \mathrm{kA}(\mathrm{N}-\mathrm{E})$).
- Compact Size Integrated Type-1 \& Type-2 protection in small module width (Ideal in all reduced-size spaces).
- Better Protection due to reduced Up(Voltage protection level 1.5 kV).
- Both Common \& Dlfferential Mode Protection.

Technical Specification	
Standard Compliance	IEC/EN 61643-11
Type / Class	Type 1+2 / Class I+II
Max Continuous Operating AC Voltage Uc	320 V (L - N), 255 V (N - PE)
Lightning Impulse (10/350 microsecond) limp	12.5 kA
Nominal Discharge Current (8/20 microsecond) In	20 kA (L - N), 40 kA (N - PE)
Max Discharge Current (8/20 microsecond) Imax	$50 \mathrm{kA} \mathrm{(L} \mathrm{-} \mathrm{N)}$,70 kA (N - PE)
Voltage Protection Level Up	$<1.5 \mathrm{kV}$
Voltage Protection Level 5 kA Up	$<1.2 \mathrm{kV}$
Max Backup Fuse	$125 \mathrm{~A} \mathrm{gL/gG}$
Temporary Overvoltage Charactersitcs (5 second) Ut	335 V
Residual Current At Uc - Ipe	<100 $\mu \mathrm{A}$
Response Time	$<25 \mathrm{~ns}$
Short Circuit Current Rating ISCCR	3 kA
Follow Current extinguishing Capability [$\mathrm{N}-\mathrm{PE}$] a.c. Ifi	100 Arms
Number of Ports	One Port SPD
Location	Indoor
Humidity	5-95\%
Operating Temperature Range	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$
Operating State/Fault Indication	Green/Red
Cross-section Area	4-35 SQ. mm
For Mounting on	35 mm Din Rail
Enclosure Material	Thermoplastic UL94-V0
Degree of Protection	IP20

Circuit Diagram:

Dimensions:

F1: Overcurrent protection device F2: Backup protection

Type 1+2 AC Surge Protection Device

Order Code	Poles	Uc (V)	$\ln (k A)$	$\operatorname{limp}(k A)$	$\operatorname{Imax}(k A)$	Up (kV)	Remote Signaling
DHSAANBC50320	TP+N	320	20	12.5	50	1.5	No
DHSAANAC50320	$1 \mathrm{P}+\mathrm{N}$	320	20	12.5	50	1.5	No
DHSAARBC50320	TP+N	320	20	12.5	50	1.5	Yes
DHSAARAC50320	$1 \mathrm{P}+\mathrm{N}$	320	20	12.5	50	1.5	Yes

Cartridges

Order Code	Pole	Uc (V)	$\ln (k A)$	$\operatorname{limp}(k A)$	$\operatorname{Imax}(k A)$	Up (kV)
DSSRCX0149	L-N	320	20	12.5	50	1.5
DSSRCX0150	$\mathrm{N}-\mathrm{PE}$	255	40	12.5	70	1.5

Type 2 AC Surge Protection Devices

Type 2 SPDs provide protection from over-voltage surges due to indirect lightning strikes hitting the building or surrounding area and switching surges ($8 / 20 \mu \mathrm{~s}$ waveform). They are necessary for second level of protection in applications where Type 1 protectors are installed upstream. They are also used for first stage of protection in residential, commercial or industrial applications not exposed to direct strikes or with no external lightning protection system.

Type 2 SPDs are suitable for use at the entrance of the installation (main DB), in intermediate distribution boards (sub DB) and by the terminal equipment.

Configuration

SP, SPN, TPN

Specification

IEC 61643-11: 2011, EN 61643-11: 2012

Features

- Tested and Approved by TUV.
- Applicable in Two Voltage Rating - Uc 320 V \& 275 V.
- Both Common \& DIfferential Mode Protection.
- Better Protection (Voltage protection level Up upto 1.3 kV , suitable for protection of all terminal equipments).

Standard Compliance	IEC/EN 61643-11	IEC/EN 61643-11
Type/Class	Type 2/Class II	Type 2/Class II
Max Continuous Operating AC Voltage Uc	275 V	320 V
Max Continuous Operating AC Voltage [N -PE] Uc	255 V	255 V
Nominal Discharge Current (8/20 microsecond) In	20 kA	20 kA
Max Discharge Current (8/20 microsecond) Imax	40 kA	40 kA
Voltage Protection Level Up	$<1.3 \mathrm{kV}$	<1.5 kV
Voltage Protection Level 5 kA Up	<1 kV	$<1.2 \mathrm{kV}$
Voltage Protection Level [N -PE] Up	$<1.5 \mathrm{kV}$	$<1.5 \mathrm{kV}$
Temporary Overvoltage with Stand (5 second) Ut	335 V	335 V
Residual Current At Uc- Ipe	<100 $\mu \mathrm{A}$	< $100 \mu \mathrm{~A}$
Short Circuit Current Rating Isccr	3 kA	3 kA
Follow Current extinguishing Capability [N-PE] a.c. Ifi	100 Arms	100 Arms
Max Backup Fuse	125 A gL/gG	$125 \mathrm{AgL} / \mathrm{gG}$
Response Time	$<25 \mathrm{~ns}$	$<25 \mathrm{~ns}$
Response Time [N -PE]	<100 ns	$<100 \mathrm{~ns}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$
Operating State/Fault Indication	Green/Red	Green/Red
Cross-section Area	4-35 SQ. mm	4-35 SQ. mm
For Mounting on	35 mm Din Rail	35 mm Din Rail
Enclosure Material	Thermoplastic UL94-V0	Thermoplastic UL94-V0
Degree of Protection	IP 20	IP 20

Circuit Diagram:

Dimensions:

Connections:

TNC System
F1: $\begin{aligned} & \text { Overcurrent } \\ & \text { protection device }\end{aligned}$
F2: Backup protection

Type 2 AC Surge Protection Device

Order Code	Poles	Uc (V)	$\operatorname{In}(k A)$	$\operatorname{Imax}(k A)$	Up (kV)	Remote Signaling
DHSA2N1N40320	$1 P$	320	20	40	1.5	No
DHSA2N1N40275	$1 P$	275	20	40	1.3	No
DHSA2NAN40320	$1 \mathrm{P}+\mathrm{N}$	320	20	40	1.5	No
DHSA2NAN40275	$1 \mathrm{P}+\mathrm{N}$	275	20	40	1.3	No
DHSA2NBN40320	$\mathrm{TP}+\mathrm{N}$	320	20	40	1.5	No
DHSA2NBN40275	$\mathrm{TP}+\mathrm{N}$	275	20	40	1.3	No
DHSA2R1N40320	1 P	320	20	40	1.5	Yes
DHSA2R1N40275	1 P	275	20	40	1.3	Yes
DHSA2RAN40320	$1 \mathrm{P}+\mathrm{N}$	320	20	40	1.5	Yes
DHSA2RAN40275	$1 \mathrm{P}+\mathrm{N}$	275	20	40	1.3	Yes
DHSA2RBN40320	$\mathrm{TP}+\mathrm{N}$	320	20	40	1.5	Yes
DHSA2RBN40275	$\mathrm{TP}+\mathrm{N}$	275	20	40	1.3	Yes

Cartridges

Order Code	Pole	Uc (V)	$\ln (k A)$	$\operatorname{Imax}(k A)$	Up (kV)
DSSRCX0151	L-N	320	20	40	1.5
DSSRCX0152	L-N	275	20	40	1.3
DSSRCX0153	N-PE	255	20	40	1.5

Data Line Surge Protection Devices

Lightning can also propagate through telecommunications and data networks. It can damage all the equipment connected to these networks: telephones, modems, computers, servers, faxes, fire alarms etc.
Today's telecommunication and data transmission devices are increasingly more vulnerable to lightning induced voltage surges due to their sensitive and complex nature as well as possible connection across several different networks. As these devices are critical to a companies' communications and information processing, it is advisable to insure them against potentially costly and disruptive events.
A data line SPD installed in-line, directly in front of a sensitive piece of equipment will increase their useful life and maintain the continuity of flow of your information.

Range

Data Line Surge Protection Devices ($6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$)

Specification

IEC 61643-21
Features

- Reduced Dimensions (only 13.4 mm module width).
- Pluggable Cartridges.
- Operational Continuity (Faulty module can be changed with mains voltage ON).
- Quick Response (Less than 1 nano second).
- Shield wire protection facility.

Technical Specification				
Nominal Voltage type	6 V	12 V	24 V	48 V
Network	RS 422	RS $232, \mathrm{RS} 485$	$4-20 \mathrm{~mA}$, Analog Signals, Digital Signals	ISDN, 48 V Line
SPD Configuration	1 Pair + Shielded			
Nominal Line Voltage Un	6 V	12 V	24 V	48 V
Max DC Operating Voltage Uc	8 V	15 V	28 V	53 V
Max Load Current IL	300 mA	300 mA	300 mA	300 mA
Max Frequency fmax	$>3 \mathrm{MHz}$	$>3 \mathrm{MHz}$	$>3 \mathrm{MHz}$	$>3 \mathrm{MHz}$
Insertion Loss	$<1 \mathrm{~dB}$	$<1 \mathrm{~dB}$	$<1 \mathrm{~dB}$	$<1 \mathrm{~dB}$
Nominal Discharge Current (8/20 Microsec) In	5 kA	5 kA	5 kA	5 kA
Max Discharge Current (8/20 Microsecond) Imax	20 kA	20 kA	20 kA	20 kA
Impulse Current (10/350 microsecond) limp	5 kA	5 kA	5 kA	5 kA
Voltage Protection Level Up	20 V	30 V	40 V	70 V
Response Time	$<1 \mathrm{~ns}$	$<1 \mathrm{~ns}$	$<1 \mathrm{~ns}$	$<1 \mathrm{~ns}$
Series Resistance	2Ω	2Ω	2Ω	
Humidity	$5-95 \%$	$5-95 \%$	$5-95 \%$	
Operating Temperature Range	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$		$5-95 \%$	
For Mounting on	35 mm Din Rail			
Cross-section Area	$0.4-2.5$ SQ. mm			
Enclosure Material	Thermoplastic UL94-0			
Degree of Protection	IP 20			

Circuit Diagram:

Dimensions:

Dataline Surge Protection Device

Order Code	Un (V)	$\ln (k A)$	$\operatorname{limp}(k A)$	$\operatorname{Imax}(k A)$	Up (V)	Remote Signaling
DHSDDN1A20006	6	5	5	20	20	No
DHSDDN1A20012	12	5	5	20	30	No
DHSDDN1A20024	24	5	5	20	40	No
DHSDDN1A20048	48	5	5	20	70	No

EURO-II

Downstream Protection Devices

DOWNSTREAM
PROTECTION DEVICES

Electricity is an indispensable part of our daily lives. Its safe use is a blessing for mankind. At the same time, its improper handling can have catastrophic consequences in the form of accidents, fire, or death.

Havells has always been at the forefront of providing safe, reliable and innovative circuit breakers for protection of electrical installations. Our range of downstream protection devices is the latest technical solution that seamlessly covers all potential hazards in electrical installation (protecting life and assets) and ensures best level of service continuity with highest level of safety. Downstream protection is advantageous in all installations due to their comfort and hassle free nature. However it is fundamental in installations requiring high level of availability to the user.

Electricity can be a LIFELINE as well as a LIFE-TAKER

Approx $\mathbf{2 5}$ people die in India daily due to electrocution

- The number could be much higher due to many cases of unreported deaths!
- If we analyse the frequent cases of non-fatal accidents, the number would be shockingly huge!
97% of all electricians have been shocked or injured on the job.

Central Electricity Authority (CEA): amendment regulation 2015, Rule 42 - "Earth Leakage protection devices" states that: "The supply of electricity to every installation other than voltage not exceeding 250 V , below 2 kW , shall be controlled by an 30 mA Earth Leakage protection device for domestic connection and 100 mA for all other installation so as to disconnect the supply instantly on occurrence of earth fault or leakage of current.
However millions of old and new installations in India do not have RCDs and continue to be unsafe.

Benefits of Downstream Protection Devices

1. High level of protection

Downstream protection can be used to achieve discrimination, when used in coordination with upstream breaker.
In case of any fault, the downstream device will provide first level of protection (sensitive and accurate fast trip action) and upstream breaker will give second level back-up protection. This is quite useful for sensitive appliances.

2. Relief from nuisance tripping \& Higher service continuity

An RCD (either RCCB or RCBO) installed at the switchboard mains is often the best option as it protects all the electrical wiring and appliances used in the house. But nuisance tripping of RCDs is a common complaint. Main reasons behind this are supply transients (e.g. lightning) and harmonics, accumulation of earth leakage currents due to lowered insulation resistance (typical problem of old equipment/ moisture tracking in rainy season), incorrect installation design and segregation of circuit etc.
Thus, in many of the old and new electrical installations, incomer ELCBs are not installed or bypassed because they cause frequent power-cut of entire house. Sometimes ELCBs with a higher sensitivity ($100 \mathrm{~mA}, 300 \mathrm{~mA}$ etc.) are installed which are insufficient to give electric shock protection. All these are not recommended as user remains open to risk from electrocution.

In such installations, it is advisable to use dedicated downstream residual current devices, especially in the high risk areas like kitchen, bathroom etc.
This would give following advantages:

- Selective tripping : only faulty appliance is disconnected
- Higher level of service continuity
- Easy and quick fault identification

3. Close to user: Easy and immediate resetting

These devices are installed at the exact point-of-use, so user can reset them easily and immediately once the fault is cleared.

- This saves time to go, identify and turn-on the tripped breaker located in distribution board elsewhere.
- It also avoids any possible risk of operating circuit breakers in a live switchboard.

It’s better to PLAY SAFE - and STAY SAFE.

4. Peace of mind: Easy to 'test'

Residual current devices save lives and should be tested once a month to ensure they are working properly. Proximity and thus higher visibility of downstream RCDs means that one is likely to test (using the 'Test button') them more frequently and easily, thus always remaining sure of his safety.

5. Best suited for unplanned additions

Downstream protection devices can be added to protect sensitive areas or appliances which were not provided for when designing mains electrical distribution board.

6. Protection From All Possible Hazards

Different devices are offered for different requirements: protecting human beings from electric shock hazards, protecting appliances from over-current and short circuit faults, or both.

7. Retro-fittable Plug-and-Play Solutions

Downstream socket protection devices are designed such that they can replace existing socket boards. Hence house owners of existing installations can also easily upgrade their electrical installation and get added built in protection of MCB/RCCB/RCBO.

EURO-II

Downstream Protection Devices

Electricity is a ubiquitous energy agent and life without it is unimaginable. Many people know that the principal danger from electricity is that of electrocution, but few really understand how minute a quantity of electrical energy can be fatal. It is one of the most under-estimated cause of accidents in India.

Thus, Havells has designed a range of downstream residual current devices to protect people from electric shock due to direct or indirect contact with electricity. These are fast-trip safety devices which are easy to install and can also be easily fitted in place of existing switch boards.

Features:

- Provide protection from the risks of leakage current (life saving).
- All-in-one devices (SRCD DBOXx \& HofeSafe SRCD), which also provide protection from overload \& short circuit faults
- Manual reset and test button for safety checks.
- In case of fault it disconnects both line \& neutral of output supply.

Range:

- HomeSafe SRCD
- SRCD DBOXX
- 2-Way SRCD
- 1-Way SRCD

Specification
IEC 62640

HomeSafe SRCD:

Havells HomeSafe SRCD is ready to use all-in-one device that provides protection to humans from electric shock due to direct or indirect contact as well as also provide protection from overload and short circuit.
It is a one stop solution to protect appliances as well as humans operating it.

Applications:

Can be used as dedicated protecting device with appliances such as Water cooler, AC, Fridge, Geyser etc.

Features:

- Provide protection from the risks of leakage current (life saving)
- Protects appliances from possible fire hazard.
- Provide protection from overload \& short circuit.
- Type A: Residual current faults of AC as well as pulsating DC
- Manual reset and test button for safety checks.
- In case of fault it disconnects both line \& neutral of output supply.
- Red indicator shows when the device is ON.
- Finger touch proof (IP 20).

Dimensions (in mm)

Technical Specification:

Rated Current	16 A	20 A	25 IEC 62640
Ref. Standard	IEC 62640	230 V	IEC 62640
Rated Voltage	230 V	30 mA	230 V
Rated Residual Current	30 mA	C	30 mA
Tripping Curve	C	500 V	C
Rated Insulation Voltage	500 V	50 Hz	500 V
Rated Frequency	50 Hz	3 kA	50 Hz
No. of Pole	SPN	SPN	
Rated Short Circuit Capacity	3 kA	Description	3 kA
Rating	Havells SRCD WOCP HomeSafe	Cat. Number	
25 H	Havells SRCD WOCP HomeSafe	DHDPACSN2030025	
20 H	Havells SRCD WOCP HomeSafe	DHDPACSN2030020	
16 A		DHDPACSN2030016	

SRCD DBOXx (Socket Residual Current Device):

Havells DBOXx SRCD is ready plug \& play all-in-one device that provides protection to humans from electric shock due to direct or indirect contact as well as provides protection from overload and short circuit faults.
It is designed such that user can easily upgrade his installation by replacing existing socket boxes and get built-in protectioin.

Applications:

1. With Dedicated appliances such as Water cooler, AC, Fridge, Geyser etc.
2. Also can be used as a plug and play box in Kitchen, bathroom etc.

Features:

- Provide protection from the risks of leakage current (life saving).
- Protects appliances from possible fire hazard.

- Provide protection from overload \& short circuit.
- Manual reset and test button for safety checks.
- Type A: Residual current faults of AC as well as pulsating DC
- Easy to fit in existing switch boards.
- In case of fault it disconnects both line \& neutral of output supply.

Dimensions (in mm)

Technical Specification:

Rated Current	16 A	20 A	25 A	
Ref. Standard	IEC 62640	IEC 62640	IEC 62640	
Rated Voltage	230 V	230 V	230 V	
Rated Residual Current	30 mA	30 mA	30 mA	
Tripping Curve	C	C	C	
Rated Insulation Voltage	500 V	500 V	500 V	
Rated Frequency	50 Hz	50 Hz	50 Hz	
No. of Pole	SPN	SPN	SPN	
Rated Short Circuit Capacity	3 kA	3 kA	3 kA	
Rating				
DBOXX SRCD Protected Socket (With Steel Enclosure)	Description	Cat. Number		

16 A	Havells SRCD WOCP Dboxx Steel Encl	DHDDCDP0252016030
20 A	Havells SRCD WOCP Dboxx Steel Encl	DHDDCDP0252020030
25 A	Havells SRCD WOCP Dboxx Steel Encl	DHDDCDP0252025030
DBOXX SRCD Protected Socket (With Plastic Enclosure for surface mounting)		
16 A	Havells SRCD WOCP Dboxx Plastic box	DHDBCDP0252016030
20 A	Havells SRCD WOCP Dboxx Plastic box	DHDBCDP0252020030
25 A	Havells SRCD WOCP Dboxx Plastic box	DHDBCDP0252025030
DBOXX MCB Protected Socket (Without Enclosure)	Havells SRCD WOCP Dboxx Plastic box	
16 A	Havells SRCD WOCP Dboxx Plastic box	DHDACDP0252016030
20 A	Havells SRCD WOCP Dboxx Plastic box	DHDACDP0252020030
25 A		DHDACDP0252025030

2-Way SRCD (Socket Residual Current Device):
Havells 2-Way SRCD is ready plug \& play device that provides protection to humans from electric shock due to direct or indirect contact.
It is designed such that user can easily upgrade his installation by replacing existing socket boxes and get built-in protectioin.

Applications:

1. With Dedicated appliances such as Washing machine, Water coolers, Fridge, Geyser etc.
2. Also can be used as a plug and play box in Kitchen, bathroom etc.

Features:

- Provide protection from the risks of leakage current (life saving).
- Type A: Residual current faults of AC as well as pulsating DC
- Manual reset and test button for safety checks.
- Easy to fit in existing switch boards.
- In case of fault it disconnects both line \& neutral of output supply.
- Indicator light glows when the device is ON

Dimensions (in mm)

Technical Specification:

Rated Current	6 A x 2/10 A x 2
Ref. Standard	IEC 62640
Rated Voltage	230 V
Rated Residual Current	
Rated Insulation Voltage	30 mA
Rated Frequency	
No. of Pole	
Supply Indication	Description
Rating	Havells 2-Way SRCD
$6 \mathrm{~A} \times 2$	Havells 2-Way SRCD

Havells 1-Way SRCD is ready plug \& play device that provides protection to humans from electric shock due to direct or indirect contact.
It is designed such that user can easily upgrade his installation by replacing existing socket boxes and get built-in protectioin.

Applications:

1. With Dedicated appliances such as Washing machine, Water coolers, Fridge, Geyser etc.
2. Also can be used as a plug and play box in Kitchen, bathroom etc.

Features:

- Provide protection from the risks of leakage current (life saving).
- Type A: Residual current faults of AC as well as pulsating DC
- Manual reset and test button for safety checks.
- Easy to fit in existing switch boards.
- In case of fault it disconnects both line \& neutral of output supply.
- Indicator light glows when the device is ON.

Dimensions (in mm)

Technical Specification:

Rated Current	6 A / 10 A
Ref. Standard	IEC 62640
Rated Voltage	230 V
Rated Residual Current	
Rated Insulation Voltage	
Rated Frequency	
No. of Pole	
Supply Indication	Description
Rating	Havells 1-Way SRCD
6 A	Havells 1-Way SRCD
10 A	

EURO-II

Downstream Protection Devices

Downstream miniature circuit breakers are an important part of new age domestic, commercial and industrial distribution systems. These devices fulfill the requirement of dedicated localized protection of valuable appliances. They are installed at the most downstream circuit, ensuring even higher degree of protection for discriminating applications.

Features

- Suitable for both DESB (Decorative Electrical Switch Board) \& switch board
- Mini MCB offers protection in switchboard against overload and short-circuit with a short-circuit capacity 3 kA
- Reliability \& Continuity of service
- Compact in size
- Low W loss thus cost effective and energy saving
- Longer electrical life
- Finger touch proof terminals (IP 20)

Range:

- HomeSafe MCB
- DBOXx MCB
- Plug \& Socket Box
- Mini MCB/Isolator

Specification
IEC 60898-1

Separate the front plate from Mini MCB/ Mini Isolator by pulling off.

Screw mount its front plate on the switchboard.

Connect the outgoing phase wire on upper terminal \& tight it. Similarly connect the incoming phase wire on lower terminal \& tight it.

Push fit Mini MCB/ Mini Isolator onto the front plate. It is now successfully installed.

Technical Specification	MIni Single Pole MCB (1P)	MIni Double Pole MCB (2P)	Mini Double Pole Isolator (2P)
Reference	IS/IEC 60898-1	IS/IEC 60898-1	IS/IEC 60947-3
Rated Current In	$\begin{gathered} 6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, \\ 32 \mathrm{~A} \end{gathered}$	$\begin{gathered} 6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, \\ 32 \mathrm{~A} \end{gathered}$	40 A
Rated Voltage Un	240 V ~	$240 \mathrm{~V} \sim / 415 \mathrm{~V} \sim$	$240 \mathrm{~V} \sim / 415 \mathrm{~V} \sim$
Tripping Curve	C	C	-
Rated Insulation Voltage	500 V	500 V	500 V
Rated Frequency	50 Hz	50 Hz	50 Hz
No. of Pole	Single Pole	Two Pole	Two Pole
Rated Short Circuit Capacity Im	3 kA	3 kA	-
Conditional Short Circuit withstand Capacity	-	-	3 kA

Dimensions (in mm)

Mini MCB SP / DP

Rating	Std. / Master Packing (No. of Unit/s)	SP Cat. No.	DP Cat. No.
6 A	6 N	DHMNCSPA006	DHMNCDPA006
10 A	6 N	DHMNCSPA010	DHMNCDPA010
16 A	6 N	DHMNCSPA016	DHMNCDPA016
20 A	6 N	DHMNCSPA020	DHMNCDPA020
25 A	6 N	DHMNCSPA025	DHMNCDPA025
32 A	6 N	DHMNCSPA032	DHMNCDPA032

Mini Isolator

Mini DP Isolator

Rating	Std. / Master Packing (No. of Unit/s)	DP Cat. No.
40 A	6 N	DHMNIDPX040

Mini MCB DP with Enclosure Hamesafe

Havells launches HomeSafe a compact \& aesthetic protection device which provides protection against overload \& short circuit with help of MCB. It is designed for quick \& easy installation.

Features

- Appealing \& Contemporary Aesthetics
- Compact \& Space saving design
- Overload \& Short Circuit Protection
- Proven MCB mechanism for longer life
- Easy to Operate \& replace
- Completely insulated design
- Indication of Supply

Specification
Reference : IS/IEC: 60898-1
Rated Current In
Rated Voltage Un
Rated Insulation Voltage
Rated Frequency
No. of Poles
Rated Short Circuit Capacity
Degree of Protection
: $\quad 32 \mathrm{~A}$

Dimensions (in mm)

Mini MCB DP with Enclosure Home Safe

Rating	Description	Cat No.
32 A	DP C 32 A Mini MCB with Enclosure	DHMPCDPA032

DBOXx MCB Protected Socket

Range

MCB Protected Socket - 16 A, 20 A \& 25 A
Specification
IS 13032 \& IS 8623

Features

- Aesthetic appeal
- Ideal for local sectioning - Selectivity
- High quality contacts of single phase starter ensures reliability \& long life during operations
- Built in MCBs protection, short circuit breaking capacity (3 kA)
- Suitable for protection of home appliances like ACs, LCD Geyser, Microwave \& Computer etc.

Dimensions (in mm)

(Mounting Hole)

DBOXx MCB Protected Socket

No. of Ways	Cat. No.	Description
(With Sheet Steel Enclosure)	DHDMCSN0251016	16 A MCB DBOXX COMBO
16 A	DHDMCSN0251020	20 A MCB DBOXX COMBO
20 A	DHDMCSN0251025	25 A MCB DBOXX COMBO
25 A	DHDMCDP0253016	16 A MCB DBOXX COMBO DP
16 A	DHDMCDP0253020	20 A MCB DBOXX COMBO DP
20 A	DHDMCDP0253025	25 A MCB DBOXX COMBO DP
25 A	DHDTCSN0251016	
With Plastic Enclosure (for surface mounting)	16 A MCB DBOXX COMBO Plastic	
16 A	DHDTCSN0251020	20 A MCB DBOXX COMBO Plastic
20 A	DHDTCSN0251025	25 A MCB DBOXX COMBO Plastic
25 A	DHDWCSN0251016	16 A MCB DBOXX COMBO W/O ENCL.
Without Enclosure	DHDWCSN0251020	20 A MCB DBOXX COMBO W/O ENCL.
16 A	DHDWCSN0251025	25 A MCB DBOXX COMBO W/O ENCL.
20 A	DHDWCM30251016	16 A MCB DBOXX COMBO 3M W/O ENCL.
25 A	DHDWCM30251020	20 A MCB DBOXX COMBO 3M W/O ENCL.
16 A	DHDWCM30251025	25 A MCB DBOXX COMBO 3M W/O ENCL
20 A		

DBOXx MCB Protected Power Unit

Range

DBOXx MCB Protected Power Unit

Specification

IS 13032 \& IS 8623

Features

- Aesthetic appeal
- Ideal for local sectioning - Selectivity
- High quality contacts of single phase starter ensures reliability \& long life during operations
- Built in MCBs protection, short circuit breaking capacity (3 kA)
- Suitable for protection of home appliances like ACs, LCD Geyser, Microwave \& Computer etc.

Dimensions (in mm)

DBOXx MCB Protected Power Unit

Rating	Description	Cat. No.
16 A	16 A MCB Protected Power Unit	DHDUCDP0253016
20 A	20 A MCB Protected Power Unit	DHDUCDP0253020
25 A	25 A MCB Protected Power Unit	DHDUCDP0253025

Plug \& Socket

Range
SPN - 20 A SP, 20 A DP \& 30 A TP
Color
Regal Grey
Specification
IS 13032 \& IS 8623
Features

- Compact DBs which occupy minimum space
- Suitable for surface mounting
- Suitable for the protection of application like ACs, Motors etc.

Dimensions (in mm)

No. of Ways	A	B	C	D	E	Top	Bottom	Sheet Thickness
20 A SP	152	116	167	139	124	2	2	1
20 A DP	152	116	167	139	124	2	2	1
30 A TP	278	230	293	129	114	1	1	1

Knockout Holes (Ø25)

Plug \& Socket Boards

SPN enclosure with 2 Pole and Earth Metal Plug \& Socket for incorporating 10 A / 20 A SPN / DP MCB		TPN enclosure with 3 Pole and Earth Metal Plug \& Socket for Incorporating TP MCB	
Rating	Cat. No.	Rating	Cat. No.
20 A	DHDPUSN020 / DHDPUDP020	30 A	DHDPUTN030 / DHDPUTN030

DBOXx Plug \& Socket DB

Applications

Air Conditioner
Refrigeration
Motors
Commercial Loads
Test Equipment
Features

- Insulated Engineered plastic Cover prevents Electric Shock
- Auto-shut Spring loaded Shutter Cap
- Indicator for Power ON-OFF Indication
- Metal base for proper Earthing
- Din Mounted Shrouded Neutral
- Elegant Aesthetics
- Ample space for wiring
- Complete Din Mounting arrangement
- IP 42

Dimensions (in mm)

DBOXx Plug \& Socket DB

Rating	Cat. No.	Description
20 A	DHDCUDP020	Plug \& socket 20 A DP With Plastic Cover D
20 A	DHDCUSN020	Plug \& socket 20 A SPN With Plastic Cover D

Plug \& Socket Box with Plastic Plug

Applications

Air Conditioner
Refrigeration
Motors
Commercial Loads
Test Equipment
Features

- Insulated plastic plug \& socket prevents Electric Shock
- Metal body for proper Earthing
- Din Mounted Shrouded Neutral
- Ample space for wiring
- Complete Din Mounting arrangement
- IP 40

Dimensions (in mm)

Plug \& Socket Box with Plastic Plug

Rating	Cat. No.	Description
20 A	DHDPHDP020	Plug \& socket 20 A DP With Plastic Plug
20 A	DHDPHSN020	Plug \& socket 20 A SPN With Plastic Plug

EURO-II

Control \& Monitoring Devices

They are switch disconnectors with independent manual operation, capable of making, carrying and breaking currents under normal circuit conditions, which may includes operating under overload condition and also carry currents under specified abnormal circuit conditions such as those of short circuit for a specified time.

Features

- Low W Loss
- Longer Electrical Life
- Wide Range
- Value for Money
- Low power consumption, thus cost effective \& energy saving
- Dual termination for simultaneous connection of bus-bars and wires
- CE and RoHS Complaint. 'Green Product'

Range

40 A-63 A
80 A-125 A
Specification
IS/IEC 60947-3

Execution

Single Pole (1P)
Double Pole (2P)
Three Pole (3P)
Four Pole (4P)

Safety Terminals
To avoid improper cable termination, the safety terminals guide the cable towards the cage terminal for systematic termination

Bi Stable Clip
Every device is provided with a dual position DIN rail clip, so it becomes much easier to change a device from a device bank connected to a bus-bar, without disturbing the existing wiring

Large Cable Terminals
Suitable for copper and aluminum cables, these terminals are compatible with cables having cross-section area upto $35 \mathrm{~mm}^{2}$ (below 63 A) and upto $50 \mathrm{~mm}^{2}(80 \mathrm{~A}-125 \mathrm{~A}$)

Cooler Operation

Grooves provided on outer body, so that when individual poles are placed adjacent to each other in a distribution board it forms a very effective channel for better air circulation, resulting into a cooler operation

Technical Specification

Standard Conformity	IS / IEC $60947-3$
Rated Current (In)	$40 \mathrm{~A}-63 \mathrm{~A} \& 80 \mathrm{~A}-125 \mathrm{~A}$
Rated Voltage (Ue)	$240 \mathrm{~V} \sim / 415 \mathrm{~V} \sim$
Rated Frequency (f)	50 Hz
No. of Poles (Execution)	$1 \mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P}, 4 \mathrm{P}$
Utilization Category	AC 22 A
Rated Insulation Voltage (Ui)	690 V
Rated Impulse Voltage (Uimp)	4 kV
Electrical / Mechanical Endurance	10000
Ambient Temperature	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Terminal Capacity (Max)	$35 \mathrm{~mm}^{2}$ upto $63 \mathrm{~A} \& 50 \mathrm{~mm}{ }^{2}$ for $80 \mathrm{~A}-125 \mathrm{~A}$
Vibration	5 g
Shock Resistance	40 mm free fall
Protection Class	$\mathrm{IP}-20$
Installation Position	Vertical / Horizontal
Mounting	Clip on DIN Rail (35 mm $\times 7.5 \mathrm{~mm})$
Case \& Cover	Molded, flame retardant thermoplastic material

MCB Isolator

SP MCB Isolator (Switching Devices)
MCB Isolators (AC-22 A, In accordance with IS/IEC 60947-3) 240 V, 50 Hz

Rating	Std. / Master Packing (No. of Unit/s)	SP Cat. No.
40 A	12 N	DHMGISPX040
63 A	12 N	DHMGISPX063

DP MCB Isolator (Switching Devices)
MCB Isolators (AC-22 A, In accordance with IS/IEC 60947-3) 240 V/415 V, 50 Hz

Rating	Std. / Master Packing (No. of Unit/s)	DP Cat. No.
40 A	6 N	DHMGIDPX040
63 A	6 N	DHMGIDPX063
80 A	6 N	DHMGIDPX080
100 A	6 N	DHMGIDPX100
125 A	6 N	DHMGIDPX125

TP MCB ISOLATOR (Switching Devices)
MCB Isolators (AC-22 A, In accordance with IS/IEC 60947-3) 240 V/415 V, 50 Hz

Rating	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
40 A	4 N	DHMGITPX040
63 A	4 N	DHMGITPX063
80 A	4 N	DHMGITPX080
100 A	4 N	DHMGITPX100
125 A	4 N	DHMGITPX125

FP MCB ISOLATOR (Switching Devices)
MCB Isolators (AC-22 A, In accordance with IS/IEC 60947-3) $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}$

Rating	Std. / Master Packing (No. of Unit/s)	FP Cat. No.
40 A	3 N	DHMGIFPX040
63 A	3 N	DHMGIFPX063
80 A	3 N	DHMGIFPX080
100 A	3 N	DHMGIFPX100
125 A	3 N	DHMGIFPX125

Dimensions (in mm) for 40 A \& 63 A

Dimensions (in mm) for 80 A, 100 A \& 125 A

DP

TP

FP

EURO-II

Control \& Monitoring Devices

MCB Changeover switch finds wide \& varied applications in industries as well as in domestic sphere for use in low voltage distribution circuits, wherever continuity of supply is necessary, for switching to an alternate source of supply from main supply and vice - versa.

Features

- Compact construction
- Double break contacts
- Silver cadmium oxide contact tips
- Shrouded terminals
- Can be mounted with other products viz. MCB, RCCBs, Isolator in Distribution Board
- CE and RoHS Complaint. 'Green Product'

Range

25 A, 40 A \& 63 A

Execution
Double Pole (2P), Four Pole (4P)
Specification
IS/IEC 60947-3

Compact Size
Optimized space in the distribution board.

Large Cable Terminals
Suitable for copper and aluminum cables, these terminals are compatible with cables $10 \mathrm{~mm}^{2}$ upto $40 \mathrm{~A} / 25 \mathrm{~mm}^{2}$ for 63 A cross section area

Center Position OFF
Front operation with three stable positions I-O-II, where center position is OFF.

Cooler Operation
Grooves provided on outer body, which form an effective channel for better air circulation, resulting into a cooler operation

Construction

The entire switching mechanism along with the fixed and moving contact assembly are housed in FR thermo plastic moulded case / cover, having high dielectric strength, excellent mechanical \& thermal properties.

The switching mechanism is double break type. The contacts tips are made of Silver Cadmium oxide for long electrical life, sustained current carrying capacity and they ensure temperature rise is within specified limits.

Technical Specification	
Standard Conformity	IS/IEC 60947-3
No. of Poles (Execution)	2 Pole, 4 Pole
Rated Current (In)	$25 \mathrm{~A}, 40 \mathrm{~A}, 63 \mathrm{~A}$
Rated Voltage (Ue)	$240 \mathrm{~V} \sim / 415 \mathrm{~V} \sim$
Rated Frequency	50 Hz
Rated Insulation Voltage	690 V
Dielectric Strength	2.5 kV
Rated Impulse Voltage	4 kV
Utilization Category	AC 21 A
Ambient Temp.	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Mechanical Life (No. of operations)	10000
Electrical Life (No. of operations)	10000
Mounting	Clip on DIN Rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)
Mounting Position	Vertical / Horizontal
Terminal Capacity 25 A \& 40 A	$10 \mathrm{~mm}^{2}$
Terminal Capacity 63 A	$25 \mathrm{~mm}^{2}$
Weight Double Pole 40 A	134 g
Weight Four Pole 40 A	268 g
Weight Double Pole 63 A	156 g
Weight Four Pole 63 A	314 g

Connection Diagrams / Terminal Marking

Two Pole

"|" - Incoming terminals (main supply) - 2 \& 6
"Il" - Incoming terminals (standby supply) - 4 \& 8
Outgoing terminals (to load) $-1 \& 5$
*Mid position of knob is 'OFF' position

Four Pole

" \mid " - Incoming terminals (main supply) - $2,6,10 \& 14$
"II" - Incoming terminals (standby supply) - $4,8,12$ \& 16
Outgoing terminals (to load) - 1, 5, 9 \& 13
*Mid position of knob is 'OFF' position

Two Way Centre Off MCB Changeover
For Dual Electricity Supply Management (In accordance with IS/IEC 60947-3)

Rating	DP Cat. No.	FP Cat. No.
25 A	DHMGODPX025	DHMGOFPX025
40 A	DHMGODPX040	DHMGOFPX040
63 A	DHMGODPX063	DHMGOFPX063

Dimensions (in mm)

DP

FP

EURO-II

Control \& Monitoring Devices

The power instability in developing countries along with changing modern lifestyle creates a need for alternative power sources such as gen-sets to back-up the utility supply. Most residential and commercial complexes today go for automatic solutions to meet 24×7 power.
Havells offers its wide range of modular and compact Automatic Changeover solutions to meet the ever-changing requirements. These devices overcome the disadvantages of manual changeovers such as increased downtime, disruption in key activities as well as possible damage of expensive equipment, human error, accidents etc. In addition, ACCL devices also offer current limiting function, thereby ensuring proper rationalization of generator power between multiple users.

With these inherent strengths along-with a host of user-friendly features, Havells Automatic Changeover devices have proven to be strong and effective power distribution management tools for all sectors.

Features for ACCL

- Automatic Changeover between Mains and Generator supply
- Current limiting function on Generator side
- Provision of automatic reset*
- Operational Status Indication through LEDs
- Consumes less power
- Easy maintenance
- Microcontroller based design
- Provision of auto/manual mode (TPN ACCL)
*Available in basic version

Range

Mains 40 A/63 A/80 A, Gen 10 A-80 A (TPN)
Mains 30 A/Gen 1.5 A to 20 A (SPN)
Mains 30 A/Gen 30 A (Automatic Changeover)
Execution
Three Pole with Neutral (TPN)
Single Pole with Neutral (SPN)

Specification
IEC 60947-6-1

Reset Button
Manual reset provision for restoring supply, when in sleep mode

LEDs Indication
Operational Status Indication through LEDs- Maine ON, Genset ON, Genset Overload etc.

Mountable in Distribution Boards
Modular design - easy to mount in distribution boards

Cable Terminals
Staggered terminal design with bottom wiring for better isolation between phase \& neutral

SPN ACCL

Havells offers SPN ACCL for single phase systems - fully automatic high precision microcontroller based source changeover devices which also have current limiting function and offer easy and 'controllable' changeover between main power supply and generator supply. They are ideally suited for efficient utilization of standby generator used in multi-storied apartments, commercial complexes etc.
They are available in two versions - Basic and Premium to meet the varying needs of commercial/ residential installations.

Features	Havells Premium SPN ACCL		Havells 3 Module SPN ACCL		Other Competitor Products	
OFF loadChangeover	\checkmark	First Load is disconnected then changeoever to other supply takes place, ensurng the isolation of two power supplies hence there is no chance of short circuiting between them.	\checkmark	ON Load Changeover	\checkmark	ON Load Changeover
Zero Crossing Detection Technology	\checkmark	Relay changeover takes place during zero crossing mark of the sinosudal AC supply. Which reduces the danger of Transient surges and Increases life of relay.	x	Can takes place on peak of sinosudal AC supply which may result in harsh effect of Transient surges and decrease in life of relay.	x	Can takes place on peak of sinosudal AC supply which may result in harsh effect of Transient surges and decrease in life of relay.
Advance Neutral	\checkmark	First Neutral makes and last neutral breaks	x	Neutral makes and break with phase.	x	Neutral makes and break with phase.
Terminal for external conductors	\checkmark	Indirect pressure type terminals	\checkmark	Indirect pressure type terminals	x	Direct Pressure type
Bottom Wiring	\checkmark	Yes	\checkmark	Yes	x	No
Staggered Wiring	\checkmark	Provides better isolation between phase and neutral	\checkmark	Provides better isolation between phase and neutral	x	Not Available
Conditional Shortcircuit current	\checkmark	3 kA	\checkmark	3 kA	x	Not Mentioned
Eco friendly housing	\checkmark	Thermoplastic, PA6 FR grade	\checkmark	Thermoplastic, PA6 FR grade	\checkmark	Thermoplastic
Local reset facility	\checkmark	Reset button Provided, for restoring supply	x	Not Provided	x	Not Provided
Overload indication facility	\checkmark	Seprate LED for Overload condition	\checkmark	Generator LED blinks to show overload condition	x	Not Provided
Standard conformity	\checkmark	IEC 60947-6-1	\checkmark	IEC 60947-6-1	x	No marking on product
Rated impulse voltage	\checkmark	2.5 kV	\checkmark	2.5 kV	x	Not mentioned
Operational voltage	\checkmark	80-300 Vac	\checkmark	150-270 Vac	\checkmark	180-240 Vac
Pre trip indication in overload condition	\checkmark	Provided	x	Not Provided	x	Not Provided
Compact design	\checkmark	$87.5 \mathrm{~mm} \times 71.8 \mathrm{~mm} \times 63 \mathrm{~mm}$	\checkmark	$87.5 \mathrm{~mm} \times 53.1 \mathrm{~mm} \times 63 \mathrm{~mm}$	\checkmark	$108 \mathrm{~mm} \times 72 \mathrm{~mm} \times 68 \mathrm{~mm}$

EURO-II

Technical Specification	Premium SPN ACCL	SPN ACCL 3 Module
Standard Conformity	IEC 60947-6-1	IEC 60947-6-1
No. of Poles	1P+N	$1 \mathrm{P}+\mathrm{N}$
Rated current (In)	30 A on mains, 1.5-20 A on generator	30 A on mains, 1.5-20 A on generator
Rated voltage (Ue)	$240 \mathrm{~V} \sim$	240 V ~
Rated frequency	50 Hz	50 Hz
Rated insulation voltage	500 V	500 V
Transfer time	8 s -12 s	$8 \mathrm{~s}-12 \mathrm{~s}$
Restoring time	$2 \mathrm{~s}-4 \mathrm{~s}$	0 s -2 s
Utilization category	AC 31 A	AC 31 A
Class of equipment	PC	PC
Environment	B	B
Indication	Mains, Generator, Load, Overload	Mains, Generator, Overload
Ambient temp.	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Electrical life (No. of operations)	6000	6000
Rated impulse voltage	2.5 kV	2.5 kV
Duty	Uninterrupted	Uninterrupted
Pollution degree	2	2
Conditional short circuit current (Inc)	3 kA	3 kA
Protection class	IP20	IP20
Mounting	standard mounting RAIL ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)	standard mounting RAIL ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)
Mounting position	Vertical /Horizontal	Vertical /Horizontal
Terminal Capacity	$10 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}^{2}$
Weight	350 g	350 g

Dimensions (in mm) - Premium SPN ACCL

HAVELLS

Dimensions (in mm) - SPN ACCL 3 Module (basic)

PREMIUM SPN ACCL

PREMIUM SPN ACCL

Gen Rating	Description	Cat. No. w/o GEN Start/Stop	Cat. No. with GEN Start/ Stop
SPN 1.5 $(300 \mathrm{~W})$	$30 \mathrm{~A} / 1.5 \mathrm{~A} \mathrm{ACCL}$	DHABOSN301X	-
SPN 2.5 $(500 \mathrm{~W})$	$30 \mathrm{~A} / 2.5$ A ACCL	DHABOSN302X	-
SPN 3 $(600 \mathrm{~W})$	$30 \mathrm{~A} / 03$ A ACCL	DHABOSN3003	DHABWSN3003
SPN 4 $(800 \mathrm{~W})$	$30 \mathrm{~A} / 4$ A ACCL	DHABOSN3004	-
SPN 5 $(1000 \mathrm{~W})$	$30 \mathrm{~A} / 5$ A ACCL	DHABOSN3005	-
SPN 6 $(1200 \mathrm{~W})$	$30 \mathrm{~A} / 06$ A ACCL	DHABOSN3006	DHABWSN3006
SPN 9 $(1800 \mathrm{~W})$	$30 \mathrm{~A} / 09$ A ACCL	DHABOSN3009	DHABWSN3009
SPN 12 $(2400 \mathrm{~W})$	$30 \mathrm{~A} / 12$ A ACCL	DHABOSN3012	DHABWSN3012
SPN 15 $(3000 \mathrm{~W})$	$30 \mathrm{~A} / 15$ A ACCL	DHABOSN3015	DHABWSN3015
SPN 20 4000 W)	$30 \mathrm{~A} / 20$ A ACCL	DHABOSN3020	DHABWSN3020

SPN ACCL

		Mains Rating	Gen Rating	Product Code	Description
		SPN 30 (6000 W)	SPN 1.5 (300 W)	DHADOSN301X	$30 \mathrm{~A} / 1.5 \mathrm{~A} \mathrm{ACCL} \mathrm{W/O} \mathrm{GEN} \mathrm{START/STOP}$
		SPN 30 (6000 W)	SPN 2.5 (500 W)	DHADOSN302X	$30 \mathrm{~A} / 2.5$ A ACCL W/O GEN START/STOP
		SPN 30 (6000 W)	SPN 3 (600 W)	DHADOSN3003	30 A/03 A ACCL W/O GEN START/STOP
		SPN 30 (6000 W)	SPN 4 (800 W)	DHADOSN3004	30 A/4 A ACCL W/O GEN START/STOP
	$0=$	SPN 30 (6000 W)	SPN 5 (1000 W)	DHADOSN3005	30 A/5 A ACCL W/O GEN START/STOP
	$0=$	SPN 30 (6000 W)	SPN 6 (1200 W)	DHADOSN3006	30 A/06 A ACCL W/O GEN START/STOP
		SPN 30 (6000 W)	SPN 9 (1800 W)	DHADOSN3009	30 A/09 A ACCL W/O GEN START/STOP
		SPN 30 (6000 W)	SPN 12 (2400 W)	DHADOSN3012	30 A/12 A ACCL W/O GEN START/STOP
		SPN 30 (6000 W)	SPN 15 (3000 W)	DHADOSN3015	30 A/15 A ACCL W/O GEN START/STOP
		SPN 30 (6000 W)	SPN 20 (4000 W)	DHADOSN3020	30 A/20 A ACCL W/O GEN START/STOP

TPN ACCL

Havells offers TPN ACCL for three phase systems - fully automatic high precision microcontroller based source changeover devices which also have current limiting function and offer easy and 'controllable' changeover between main power supply and generator supply. They are ideally suited for efficient utilization of standby generator used in multi-storied apartments, commercial complexes etc.

They are available in two versions - Basic and Compact to meet the varying needs of users.

FUNCTIONS

1. When mains supply is available

The device will run the load on mains supply if the R phase is available irrespective of the availability of all other phases. It is recommended to connect the entire essential load to R phase.
2. When mains supply fails

If mains supply goes off (detected by R phase), the device will automatically sense and actuate the inbuilt changeover mechanism to the generator supply. This takes 8-12 seconds so as to avoid sudden loading on generator. TPN ACCL also allows user to opt for manual mode for manual transfer of load to gen-set.
Current Limiting feature on Generator side: If load current exceeds the preset allowable limit, then Overload LED will start glowing, but load will remain connected for 5 seconds to ignore the surge current. But if load still persists beyond the preset limit, it is disconnected for 8 second as a warning and then automatically reconnected. Such cycle of interruptions continue for a number of times during which the user is expected to switch off nonessential loads.
3. When mains supply restores

On resumption of mains, the load is automatically transferred to main supply after a time delay of 2-4 seconds.

Parameters	TPN ACCL (TPN ACCL in Sheet metal)		Compact TPN ACCL (TPN ACCL in Thermoplastic)	
Automatic Changeover	\checkmark		\checkmark	
Overload Protection on Gen side	\checkmark		\checkmark	
Range	Mains	Gen	Mains	Gen
	TPN 63 A	TPN/SPN 2.5 A-50 A	TPN 63 A	TPN 2.5 A-40 A
	TPN 40 A	TPN/SPN 2.5 A-40 A	TPN 40 A	TPN 2.5 A-40 A
Dimensions	(260 mm $\times 243 \mathrm{~mm} \times 115 \mathrm{~mm}$) for 40 A TPN ACCL (260 mm x $243 \mathrm{~mm} \times 150 \mathrm{~mm}$) for 63 A TPN ACCL		$(175 \mathrm{~mm} \times 130 \mathrm{~mm} \times 80.4 \mathrm{~mm})$	
Mode selection	\checkmark		\times	
Local reset facility	Required, as ACCL goes into the sleep mode after 5 cycles of interruption		Not required, as overload tripping continues till current is not within the limit	
Indications	Mains, Gen, Load, Overload on R, Y and B phase, Auto/manual mode through membrane keypad		Mains, Gen, Overload on R,Y and B phase, Pre-trip Indication	
Mounting	Surface mounted		1. Surface mounted, 2. DIN Rail mounted (35 mm and 75 mm DIN Rail)	
Housing	Sheet metal		Thermoplastic	

Technical Specification	TPN ACCL	Compact TPN ACCL
Standard Conformity	IEC 60947-6-1	IEC 60947-6-1
No. of Poles	$3 \mathrm{P}+\mathrm{N}$	$3 \mathrm{P}+\mathrm{N}$
Rated current (In)	$40 \mathrm{~A} / 63 \mathrm{~A} / 80 \mathrm{~A}$ on mains, $10 \mathrm{~A}-63 \mathrm{~A}$ on gen	40 A on mains, 2.5 A-40 A on gen
Rated voltage (Ue)	415 V / $2220 \mathrm{~V} \sim$	$415 \mathrm{~V} \sim / 240 \mathrm{~V} \sim$
Rated frequency	50 Hz	50 Hz
Transfer time	$8 \mathrm{~s}-12 \mathrm{~s}$	$2 \mathrm{~s}-4 \mathrm{~s}$ (main to load), $8 \mathrm{~s}-12 \mathrm{~s}$ (gen to load)
Restoring time	$2 \mathrm{~s}-4 \mathrm{~s}$	$2 \mathrm{~s}-4 \mathrm{~s}$
Utilization category	AC 31 A	AC 31 A
Class of equipment	PC	PC
Environment	B	B
Indication	Mains, Generator, Load, Overload ($\mathrm{R}, \mathrm{Y}, \mathrm{B}$), mode of operation (auto/manual)	Mains, Generator, Pre-trip, Overload ($\mathrm{R}, \mathrm{Y}, \mathrm{B}$)
Ambient temp.	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Electrical life (No. of operations)	6000	6000
Rated impulse voltage	6 kV	4 kV
Duty	Uninterrupted	Uninterrupted
Pollution degree	2	2
Conditional short circuit current (Inc)	5 kA	5 kA
Protection class	IP 20	IP 20
Mounting	surface mounting	din-rail (35 mm \& 75 mm), surface mounting
Mounting position	Vertical	Vertical /Horizontal
Terminal Capacity	$16 \mathrm{~mm}^{2} / 35 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$
Weight	$4.5 \mathrm{~kg} / 9.4 \mathrm{~kg}$	1.5 kg

Dimensions (in mm) - TPN ACCL

Rating	A	B	C	D	E
40 A TPN ACCL	115	243	205	224	260
63 A TPN ACCL	150	243	205	224	260
80 A TPN ACCL	150	333	293	337	383

Dimensions (in mm) - Compact TPN ACCL

TPN ACCL (TPN/SPN)
(Automatic Source Changeover with Current Limiter)

Gen Rating	Description	Cat. No.	Cat. No. with GEN Start/Stop
20 A	40 A/20 A TPN/SPN ACCL	DHACOTN4020	DHACWTN4020
25 A	40 A/25 A TPN/SPN ACCL	DHACOTN4025	DHACWTN4025
30 A	40 A/30 A TPN/SPN ACCL	DHACOTN4030	DHACWTN4030
40 A	40 A/40 A TPN/SPN ACCL	DHACOTN4040	DHACWTN4040
20 A	63 A/20 A TPN/SPN ACCL	DHACOTN6320	DHACWTN6320
25 A	63 A/25 A TPN/SPN ACCL	DHACOTN6325	DHACWTN6325
30 A	63 A/30 A TPN/SPN ACCL	DHACOTN6330	DHACWTN6330
40 A	63 A/40 A TPN/SPN ACCL	DHACOTN6340	DHACWTN6340
63 A	80 A/63 A TPN/SPN ACCL	DHACOTN8063	-

TPN ACCL (TPN/TPN)
(Automatic Source Changeover with Current Limiter)

Gen Rating	Description	Cat. No.	Cat. No. with GEN Start/Stop
20 A	40 A/20 A TPN/TPN ACCL	DHACOTT4020	DHACWTT4020
25 A	40 A/25 A TPN/TPN ACCL	DHACOTT4025	DHACWTT4025
30 A	40 A/30 A TPN/TPN ACCL	DHACOTT4030	DHACWTT4030
40 A	40 A/40 A TPN/TPN ACCL	DHACOTT4040	DHACWTT4040
20 A	63 A/20 A TPN/TPN ACCL	DHACOTT6320	DHACWTT6320
25 A	63 A/25 A TPN/TPN ACCL	DHACOTT6325	DHACWTT6325
30 A	63 A/30 A TPN/TPN ACCL	DHACOTT6330	DHACWTT6330
40 A	63 A/40 A TPN/TPN ACCL	DHACOTT6340	DHACWTT6340
63 A	80 A/63 A TPN/TPN ACCL	DHACOTT8063	-

OMPACT TPN ACCL
(40 A Compact TPN ACCL)

Gen Rating	Cat. No.	Description
40 A	DHAEOTT402X	40 A/2.5 A Compact TPN/TPN ACCL
40 A	DHAEOTT4003	40 A/03 A Compact TPN/TPN ACCL
40 A	DHAEOTT4004	40 A/04 A Compact TPN/TPN ACCL
40 A	DHAEOTT404X	40 A/4.5 A Compact TPN/TPN ACCL
40 A	DHAEOTT4005	40 A/05 A Compact TPN/TPN ACCL
40 A	DHAEOTT4006	40 A/06 A Compact TPN/TPN ACCL
40 A	DHAEOTT4008	40 A/08 A Compact TPN/TPN ACCL
40 A	DHAEOTT4010	40 A/10 A Compact TPN/TPN ACCL
40 A	DHAEOTT4015	40 A/15 A Compact TPN/TPN ACCL
40 A	DHAEOTT4020	40 A/20 A Compact TPN/TPN ACCL
40 A	DHAEOTT4025	40 A/25 A Compact TPN/TPN ACCL
40 A	DHAEOTT4030	40 A/30 A Compact TPN/TPN ACCL
40 A	DHAEOTT4040	40 A/40 A Compact TPN/TPN ACCL

Automatic Changeover

Havells Automatic Changeover is a fully automatic high precision microcontroller based device and is ideally suited for unmanned power transfer operations between two sources in bungalows, multi storied apartments, commercial complexes, etc.

Functions

1. When the Mains Supply is available:

- Load is connected to mains supply after time delay of 1 to 2 seconds $(63 \mathrm{~A}) / 2$ to 4 seconds (30 A) allows to draw full load current.

2. When the Mains supply fails:
(a) With AGS (automatic generator stop features)

- When the mains supply goes off i.e. fails, automatic changeover will sense Gen supply and actuate the inbuilt changeover mechanism.
- A consumer is automatically connected to the Generator supply after a time delay of 6 to 12 seconds (63 A) / 12 to 15 seconds (30 A) in order to limit the sudden load on the Generator.

When the Mains supply is restored:

- On resumption of the mains supply, the load is automatically transferred to the main supply after a time delay of 1 to 2 seconds (63 A) / 2 to 4 seconds $(30 \mathrm{~A})$ and stop signal is sent to Gen.
(b) Without AGS (automatic generator stop features)
- When the mains supply goes off i.e. fails, automatic changeover will sense Gen supply and actuate the inbuilt changeover mechanism.
- A consumer is automatically connected to the Generator supply after a time delay of 6 to 12 seconds (63 A) / 12 to 15 seconds (30 A) in order to limit the sudden load on the Generator.

When the Mains supply is restored:

- On resumption of the mains supply, the load is automatically transferred to the main supply after a time delay of 1 to 2 seconds (63 A) / 2 to 4 seconds (30 A).

Technical Specification	30 A Automatic Changeover	63 A Automatic Changeover
Standard Conformity	IEC 60947-6-1	IEC 60947-6-1
No. of Poles	$1 \mathrm{P}+\mathrm{N}$	$1 \mathrm{P}+\mathrm{N}$
Rated current (In)	30 A	63 A
Rated voltage (Ue)	240 V ~	240 V ~
Rated frequency	50 Hz	50 Hz
Mains to Gen transfer time	$12 \mathrm{~s}-15 \mathrm{~s}$	6 s -12 s
Restoring time	$2 \mathrm{~s}-4 \mathrm{~s}$	$1 \mathrm{~s}-2 \mathrm{~s}$
Utilization category	AC 31 A	AC 31 A
Indication	Mains, Generator, Load	Mains, Generator, Load
Ambient temp.	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Electrical life (No. of operations)	6000	6000
Rated impulse voltage	2.5 kV	2.5 kV
Rated insulation voltage	500 V	500 V
Conditional short circuit current (Inc)	3 kA	3 kA
Protection class	IP 20	IP 20
Mounting	din-rail ($35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$)	wall mounting
Mounting position	Vertical/Horizontal	Vertical/Horizontal
Terminal Capacity	10 mm²	16 mm²

Dimensions (in mm) - 30 A Automatic Changeover

Dimensions (in mm) - 63 A Automatic Changeover

Automatic Changeover

30 A Automatic Changeover

Gen Rating	Description	Cat. No. w/o GEN Start/Stop	Cat. No. with GEN Start/Stop
SPN $30(6000$ W)	SPN $30(6000$ W)	DHAAOSN3030	DHAAWSN3030

63 A Automatic Changeover

Gen Rating	Description	Cat. No. w/o GEN Start/Stop	Cat. No. with GEN Start/Stop
SPN 63 $(6000 \mathrm{~W})$	SPN 63 $(6000 \mathrm{~W})$	DHAAOSN6363	DHAAWSN6363

EURO-II

Control \& Monitoring Devices

TIME SWITCH

Time switches are used in residential, commercial and industrial premises to improve comfort and save energy by switching loads automatically as per real time. Havells offers a variety of time switches to precisely meet the requirements of different applications. The range offers several feature benefits such as different options of minimum switching time, internal battery to enable the timing function in case of power failure, daily and weekly versions, simple and compact design.

Features

- Digital and analog version
- Easy time setting
- Helps in saving energy \& time
- Text oriented user guidance in display
- Modular, compact \& din-rail mountable design

Range

- 24 Hours Analog Time Switch
- Programmable Time Switch 24 Hours
- Digital Weekly Programmable Time Switch
- Astronomical Programmable Time Switch
- Staircase Light Time Switch

Large LCD Display
Easy snap on din-rail mounting

Protective Cover
For protecting the LCD from mechanical shocks \& scratches

Manual Override Option
All time switches have the option to manually override the programming and permanently ON/OFF the circuit for emergent situations (without disturbing the pre-set program).

Operating Voltage	220-240 Vac
Rated Frequency	$50-60 \mathrm{~Hz}$
Width	54.5 mm
Weight	200 g
Installation Type	DIN Rail
Type of Contact	Changeover Contact
Program Functions	ON / OFF
Number of Memory Locations	48
Power Reserve	150 h
Max. Switching Capacity at 250 Vac, $\cos \Phi=1$	16 A
Max. Switching Capacity at 250 $\mathrm{Vac}, \cos \Phi=0.6$	4 A
Shortest Switching Time	30 min
Mechanical Life	10^{7}
Electrical Life	10^{5}
Time Accuracy	$\leq 1 \mathrm{~s} / \mathrm{d}$ Quartz
Power Consumption	5 VA
Degree of Protection	IP 20
Ambient Temperature	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

24 Hours Analog Time Switch

24-Hours Analog Time Switch has a 24 -hour dial and is used to switch an electrical circuit "ON" or "OFF" at selected times, during the day, programmed in advance. The start of the programme has to be set on the dial by pulling a segment on the desired time.

Applications:
The 24 Hours Analog Time Switch is used in pre-programmed switching of:

- Lighting (car parking, advertising sign boards)
- Heating equipment (home \& work environment, water heating, etc.)
- Motors for pumps \& fans

Wiring Diagram
Single Load

For example
Consider an Electric lamp in connection with
Analog Time Switch

Multiple Load

Dimensions (in mm)

24 Hours Analog Time Switch

Description	Cat. No.
24 Hours Analog Time Switch	DHTED30016

Technical Specification	
Operating Voltage	$220-240 \mathrm{Vac}$
Rated Frequency	50 Hz
Width	54.5 mm
Weight	200 g
Installation Type	DIN Rail
Type of Contact	ON / OFF
Program Functions	48
Number of Memory Locations	150 h
Power Reserve	16 A
Max. Switching Capacity at 250	10 A
Vac, cosథ $=1$	2300 W
Max. Switching Capacity at 250	15 min
Vac, cos $\Phi=0.6$	10^{7}
Incandescent / Halogen Lamps	10^{5}
Shortest Switching Time	$\leq 1 \mathrm{~s} / \mathrm{d}$
Mechanical Life	5 VA
Electrical Life	IP 20
Time Accuracy	$-10^{\circ} \mathrm{C} \mathrm{to} \mathrm{+55}{ }^{\circ} \mathrm{C}$
Power Consumption	
Degree of Protection	Ambient Temperature

Programmable Time Switch 24 Hour

Programmable Time Switch 24 Hours has a 24 Hours dial and is used to switch an electrical circuit "ON" or "OFF" at selected times during the day, programmed in advance. A program consists of a closing time and an opening time for a circuit.

Applications:
The Programmable 24 Hours Electronic Time Switch is used in preprogrammed switching of:

- Lighting (car parking, advertising sign boards)
- Heating equipment (home \& work environment, water heating etc.)
- Motors for pumps \& fans

Wiring Diagram
Single Load

For example

Consider an Electric lamp in connection with
Programmable Time Switch 24 Hours

Multiple Load

Dimensions (in mm)

Programmable Time Switch 24 Hours

Description	Cat. No.
Programmable Time Switch 24 Hours	DHTDD15016

Technical Specification	
Operating Voltage	240 Vac
Rated Frequency	50 Hz
Width	36 mm
Weight	150 g
Installation Type	DIN Rail
Type of Contact	Changeover Contact
Program	Weekly Program
Program Functions	ON / OFF
Number of Programming	8 ON / 8 OFF
Power Reserve	150 h
Max. Switching Capacity at 250	16 A
Vac, cos $\Phi=1$	10 A
Max. Switching Capacity at 250	2300 W
Vac, cos Φ 0.6	1 min
Incandescent / Halogen Lamps	10^{7}
Shortest Switching Time	10^{5}
Mechanical Life	$\leq 1 \mathrm{~s} / \mathrm{d}$
Electrical Life	5 VA
Time Accuracy	IP 20
Power Consumption	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Degree of Protection	
Ambient Temperature	

Digital Weekly Programmable Time Switch

Digital Weekly Programmable Time Switch automatically turns lighting or other loads on/off when the programmed on/off time expires. Depending on the day of the week (Mon - Sun) different daily programs can be configured.

Applications

The Digital Weekly Programmable Time Switch can be used in pre - programmed switching of:

- Lighting (car parking, advertising sign boards)
- Heating equipment (Home \& work environment, water heating etc.)
- Motors for pumps \& fans

Multiple Load

Dimensions (in mm)

Consider an Electric Heater in connection with Programmable Time Switch

Digital Weekly Programmable Time Switch

Description	Cat. No.
Digital Weekly Programmable Time Switch	DHTAW01016

Technical Specification	
Operating Voltage	240 Vac
Rated Frequency	50 Hz
Width	36 mm
Weight	125 g
Installation Type	DIN Rail
Type of Contact	ON / OFF
Program Functions	$8 \mathrm{ON} / 8$ OFF
Number of Programming	48 h
Power Reserve	16 A
Max. Switching Capacity at 250	10 A
Vac, cos $\Phi=1$	1000 W
Max. Switching Capacity at 250	1 min
Vac, cos $\Phi=0.6$	10^{7}
Incandescent / Halogen Lamps	10^{5}
Shortest Switching Time	$\leq 2 \mathrm{~s} / \mathrm{d}$
Mechanical Life	$<4 \mathrm{VA}$
Electrical Life	IP 20
Time Accuracy	$-10^{\circ} \mathrm{C} \mathrm{to} \mathrm{+40}^{\circ} \mathrm{C}$
Power Consumption	
Degree of Protection	Ambient Temperature

Astronomical Weekly Programmable Time Switch

Astronomical Programmable Time Switch automatically adjusts the set time along with seasonal variation. For example it can be programmed such that light is turned on when sun sets \& turned off when sun rises.

Applications
The Astronomical Time Switch is used in controlling:

- Street lights
- Advertising sign boards
- Car parking lights
- Garden lights
- Lights in shop windows

Wiring Diagram

Time Switch

Astronomical Weekly Programmable Time Switch

Description
Astronomical Weekly Programmable Time Switch

Astronomical Weekly Programmable Time Switch

Technical Specification	
Operating Voltage	240 Vac
Rated Frequency	50 Hz
Width	17.5 mm
Weight	75 g
Installation Type	DIN Rail
Adjustment Range	$30 \mathrm{~s}-20 \mathrm{~min}$
Type of Contact	NO Contact
Type of Connection	$3-/ 4-$ conductor
Max. Switching Capacity at	16 A
250 Vac, cos Φ =	10 A
Max. Switching Capacity at	2300 W
250 Vac, cos $=0.6$	Sliding Switch
Incandescent / Halogen Lamps	IP 20
Switch for Permanent Light	$-10^{\circ} \mathrm{C} \mathrm{to} \mathrm{+555}^{\circ} \mathrm{C}$
Degree of Protection	
Ambient Temperature	

Staircase Light Time Switch

Staircase Light Time Switch is a variable delay timer to control stairwell lighting. A momentary action push button will initiate its output, which will then 'time out' after a pre - set delay has elapsed.

Applications:

The Staircase Light Time Switch is specifically used in controlling stairwell lighting in multiplexes, hotels, offices etc. It can also be used as a delay timer, to turn on/off any connected load after a pre-set delay. For example, turn-off motor after 15 minutes automatically.

Wiring Diagram
3 Wire Connection

Time Switch

Staircase Light Time Switch
Description

EURO-II

Modular Contactors

MODULAR
CONTACTORS

Nowadays there is a growing trend of automation processes in building wiring and installation. Thus there is a need for compact and energy efficient load controlling devices which can be integrated in the existing building infrastructure.

Havells has designed a wide range of Modular Contactors for centralized control and remote switching of electric devices used in buildings such as hotels, hospitals, shopping centers, offices, public buildings, sport centers, domestic applications etc. They are used for remotely controlling electric circuits for lighting, HVAC, pumps and other building automation systems. Modular Contactors are the latest offering in Havells Euro II range of control and protection devices. Available in 16 A-63 A rating, single pole or multi-pole, automatic and manual versions and having various contact configurations, the range offers a complete package for meeting diverse application needs of modern times.

EURO-II

Modular Contactors

$$
\begin{aligned}
& \text { FEATURES \& } \\
& \text { BENEFITS }
\end{aligned}
$$

Homogenous with the entire Havells Modular products.

Retro Fittable Auxilary: Simple, Clip-ON, Toolfree attachment with contactor

Operating Mode Selection: Manual contactors have four position selector on front face to choose between: - Automatic operating mode / Temporary "ON" mode / Permanent "ON" mode / Shutdown mode

Best in class features with quality design

Principle of operation

Contactors are electromechanically actuated switches comprising of main circuit and control circuit. They are used to control single or multi-phase high power loads in main circuit, via a very low powered control circuit.
A contactor's control circuit basically comprises of electromagnet and coil assembly. There are two E-shaped electromagnets - Fixed Core \& Moving Core, and a coil is wound on their central limbs. The main circuit basically consists of the contact assembly i.e. fixed contacts and moving contacts. Contactor may be single-pole or multi-pole. Its contacts may be a combination of normally open (NO) and normally closed (NC) type, depending on their natural status when control circuit is un-energized. The interlinking between moving core and moving contacts helps in opening or closing of power contacts.
Figure shows, in a simplified manner, the working principle of a three pole contactor with NO type main contacts.
When an energy supply is connected to the coil connections, it draws current, and produces a magnetic field. An upward electromagnetic force acts on the moving magnet, which moves towards the fixed magnet in order to reduce the overall reluctance of flux path. As the moving core's movement is linked to moving contacts, they too come in complete contact with the fixed contacts. This closes the main/power circuit and provides output to the connected load. By interruption of the coil control circuit the movable magnet core and thus also the contact assembly returns to their starting position. Contact spring returns the contacts to their normal state.
Modular contactors belong to the class of air-break switches. If coil power is removed, an arc is created as the contacts open. It is extinguished by separating the contacts by a sufficient distance. Air-break contactors are economic and have lesser maintenance costs in comparison to other classes of contactors (e.g. oil immersed, vacuum etc.).

Control Circuit is Un-energized

Control Circuit is Energized

Working principle of contactor (explained w.r.t. NO contacts)

Advantage 'Modular'

Modular DIN rail components are devices designed to be used with a standardized mounting rail having dimensions $35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$ (EN 50022). Such components are designed for a high degree of safety and finger protection. They are designed using the concept of modular width, and are either a fraction of, or multiples of, a single "module", which is standardized at 18 mm . Their compact construction saves space andincreasescustomerbenefitsinbuilding segment applications.
Havells modular contactors are the latest addition to our family of din-rail modular devices. In comparison to industrial contactors, they occupy a significantly reduced space. Modular contactors are suited for installation in a variety of day-to-day enclosures - distribution panels, switchboards, distribution boxes, consumer units etc.

Utilization categories

Contactors are a common electromechanical switching device used in industrial, commercial and residential applications. Utilization category plays an important role in their correct selection. Each category refers to different applications according to the switching conditions delivered by contactor (voltage, current, power factor, in-rush current, switching frequency, etc.)

Utilization categories of contactors as defined in IEC 60947-4-1	
Category	Typical applications
AC-1	Non-inductive or slightly inductive loads, resistance furnaces
AC-2	Slip-ring motors: starting, switching off
AC-3	Squirrel-cage motors: starting, switching off motors during running
AC-4	Squirrel-cage motors: starting, plugging, inching
AC-5a	Switching of electric discharge lamp controls (ballast)
AC-5b	Switching of incandescent lamps
AC-6a	Switching of transformers
AC-6b	Switching of capacitor banks
AC-7a	Slightly inductive loads in household appliances and similar applications
AC-7b	Motor-loads for household applications
AC-8a	Hermetic refrigerant compressor motor control with manual resetting of overload releases
AC-8b	Hermetic refrigerant compressor motor control with automatic resetting of overload releases
DC-1	Non-inductive or slightly inductive loads, resistance furnaces
DC-3	Shunt-motors: starting, plugging, inching. Dynamic breaking of d.c. motors
DC-5	Series-motors: starting, plugging, inching. Dynamic breaking of d.c. motors
DC-6	Switching of incandescent lamps

- Plugging means stopping or reversing the motor rapidly by reversing motor primary connections while the motor is running
- Inching (jogging) means energizing a motor once or repeatedly for short periods to obtain small movements of the driven mechanism.
- Both AC-3 and AC-7a category may be used for occasional inching (jogging) or plugging for limited time periods such as machine set-up; during such limited time periods, the number of such operations should not exceed five per minute or more than ten in a 10 min period.

Modular contactors are compliant to IEC 61095. (This standard IEC 61095 applies to electromechanical air break contactors for household and similar purposes provided with main contacts intended to be connected to circuits the rated voltage of which does not exceed 440 Vac (between phases) and with rated operational currents less than or equal to 63 A for utilization category AC-7a and 32 A for utilization categories AC-7b and AC-7c, and rated conditional short-circuit current less than or equal to 6 kA).

The modular contactor's utilization category AC-7a is comparable to AC-1, but the slightly inductive loads find their use in household-like conditions. Their utilization category AC-7b is comparable to AC-3, but the motor loads find their use in household-like conditions.

Building Automation in focus..

As users are becoming more conscious about energy saving and efficiency, electrical installations in modern buildings are being adapted to meet these requirements.
Modular contactors are a step in this direction as they can be easily integrated in building automation systems. Using contactors with multiple-function timers, push-buttons, switches, other centralized management systems etc. can save precious time, resources and energy.

Making \& Breaking Capacities
Switching devices must always be selected based on the loads to be controlled, which differ in regards to making and breaking currents.

Categories	Making and breaking conditions						
	$I_{c} / I_{\text {e }}$	U_{r} / U_{e}	$\operatorname{Cos} \varphi$	On-time (s)	Off-time (s)	Number of operating cycles	Reference standard
AC-1	1.5	1.05	0.8	0.05 (7)		50	IEC 60947-4-1
AC-2	4.0 (4)	1.05	$0.65(4)$	0.05 (7)		50	IEC 60947-4-1
AC-3	8.0	1.05	"0.45 (lest100 A)	0.05 (7)	(1)	50	IEC 60947-4-1
AC-4	10	1.05	0.35 (le>100 A)"	0.05 (7)		50	IEC 60947-4-1
AC-5a	3	1.05	0.45	0.05 (7)		50	IEC 60947-4-1
AC-5b	$1.5{ }^{(2)}$	1.05	(2)	$0.05{ }^{(7)}$	60	50	IEC 60947-4-1
AC-6a	${ }^{(3)}$						
AC-6b	1.56 (6)	1.05		(6)	(6)	50	IEC 60947-4-1
AC-7a	1.5	1.05	0.8	$0.05(7)$	(1)	50	IEC 61095
AC-7b	8.0	1.05	0.45	$0.05(7)$		50	IEC 61095
AC-8a	6.0	1.05	$\begin{aligned} & " 0.45(\mathrm{le} \leq 100 \mathrm{~A}) \\ & 0.35(\mathrm{le}>100 \mathrm{~A}) " \end{aligned}$	0.05 (7)	(1)	50	IEC 60947-4-1
AC-8b	6.0	1.05		0.05 (7)		50	IEC 60947-4-1

Conventional Operations

Conventional Operational Performance covers the load test, which shows the circuit behavior under normal use. The contactor must be able to switch on and switch off under agreed conventional conditions and an agreed number of cycles without failure of the device.

Categories	Making and breaking conditions						
	$I_{\mathrm{c}} / I_{\mathrm{e}}$	U_{r} / U_{e}	$\operatorname{Cos} \varphi$	On-time (s)	Off-time (s)	Number of operating cycles	Reference standard
AC-1	1.0	1.05	0.8	0.05 (7)	(1)	6000(5)	IEC 60947-4-1
AC-2	2.0	1.05	0.65	$0.05{ }^{(7)}$		6000(5)	IEC 60947-4-1
AC-3	2.0	1.05	$\begin{aligned} & 0.45(\mathrm{le} \leq 100 \mathrm{~A}) \\ & 0.35(\mathrm{le}>100 \mathrm{~A}) \end{aligned}$	0.05 (7)		6000(5)	IEC 60947-4-1
AC-4	6.0	1.05				6000(5)	IEC 60947-4-1
AC-5a	2.0	1.05	0.45	0.05 (7)		6000(5)	IEC 60947-4-1
AC-5b	$1.0{ }^{(2)}$	1.05	(2)	0.05 (7)	60	6000(5)	IEC 60947-4-1
AC-6a	(3)						
AC-6b	1(6)	1.05		(6)	(6)	6000	IEC 60947-4-1
AC-7a	1.0	1.05	0.8	0.05 (7)		30000	IEC 61095
AC-7b	$\begin{gathered} 6.0 \text { (making) } \\ 1.0 \\ \text { (breaking) } \\ \hline \end{gathered}$	$\begin{gathered} 1.0 \text { (making) } \\ 0.17 \\ \text { (breaking) } \end{gathered}$	0.45	$0.05(7)$	(1)	30000	IEC 61095
AC-8a	1.0	1.05	0.8	0.05 (7)	(1)	30000	IEC 60947-4-1
AC-8b	6.0	1.05	$\begin{aligned} & " 0.45(l e \leq 100 \mathrm{~A}) \\ & 0.35(\mathrm{le}>100 \mathrm{~A}) \text { " } \end{aligned}$	1	9	5900	IEC 60947-4-1
				10	<200	100	IEC 60947-4-1

(1) Off time : 10 s ($\mathrm{Ic} \leq 100 \mathrm{~A}$), $20 \mathrm{~s}(100<\mathrm{Ic} \leq 200), 30 \mathrm{~s}(200<\mathrm{Ic} \leq 300), 40 \mathrm{~s}(300<\mathrm{Ic} \leq 400) \ldots$. TTable 8 : IEC 60947-4-1]
(2) Use incandescent load during test
(3) Test with a transformer or derive the rating from the AC-3 values according to Table 9 (IEC 60947-4-1)
(4) The values shown are for stator contactors. For rotor contactors, test with $\mathrm{Ic} / \mathrm{le}=4$ and power factor 0.95
(5) For manually operated switching devices, the number of operating cycles shall be 1000 on-load, followed by 5000 off-load
(6) The load shall consist of commercially available capacitor combinations. Refer IEC 60947-4-1 for details.
(7) The time may be less than 50 ms , provided that contacts are allowed to become roperly seated before reopening.
I_{C} : current made and broken, expressed in r.m.s. symmetrical values, but it is understood that the actual peak value in the making operation may assume a higher value than the symmetrical peak value.
I_{e} : rated operational current.
$U_{r}: \quad$ power frequency recovery voltage.
U_{e} : rated operational voltage.
$\operatorname{Cos} \varphi$: power factor of the test circuit.

Applications

Modular contactors act as an interface between the order giver (e.g. centralized technical management, power utility signal, load-shedding device, pushbutton, programmable time switch...) and the power circuit for final circuits.
Some typical examples are:

- Power control of final circuits for housing and the tertiary sector:
- Lighting (luminous signs, shop windows, safety lighting etc.)
- Heating, heat pumps, ovens
- Hot water for domestic use
- Small utility motors (pumps, fans, barriers, garage doors, roller blinds, mechanical ventilation systems etc.)
- Air conditioning
- Energy distribution and control:
- Load shedding and restoration
- Source changeover, etc.

Resistive/ Slightly inductive loads

Loads such as electric heating, water heaters etc. have starting current virtually the same as operating current. Such loads come under utilization category AC-7A and can be controlled by modular contactors.

Electric Heaters

Motor Loads

Motor starting causes high inrush currents that can reach 6 to 8 times the operating current in a time range up to 10 s. Such motor loads used in household like conditions come under utilization category AC-7B and can be controlled by modular contactors. Examples are - ventilation, pumps etc.

Mixed loads

More and more buildings use automatic systems for energy control. For eg., hotel rooms have to be powerless if nobody is inside and the power has to be switched on after entry of people.
Mixed loads include a variety of different inrush currents. The switching of such mixed loads, typically required for apartments, hotels, shops, ships etc entails that multiple requirements for modular contactors are met. As all loads are centrally controlled in the switch cabinet, the switching devices should be of the same design which is offered by modular contactors. Further, modular contactors also offer the possibility of easy integration into the existing power supply system of a house, because their control circuit is rated for 230 V .
Some applications are load shedding circuits and access control with key-cards.

Lamp loads

Conference rooms, shopping centers and official buildings use a lot of rows of lighting load, which can be controlled by multi-pole contactors to save costs. Lamp loads cause capacitive inrush current peaks that can be a multiple of the operating current. Therefore the right selection of contactor rating is important. Lamp table helps to make selection and planning easier.

Lighting control via contactors

Automatic control via contactor \& Time switch

Automated control with time switches

Modular contactors act as soldiers of time switch when they are applied to follow orders from time switches to control multiple circuits (or channels) of much heavier current appliances. The range of 16 A to 63 A allows for the reliable control of many different load types (i.e. motors, lighting, or pumps) and levels of loading without affecting the operation or the life expectancy of the Time Switch.

Used for an array of electrical applications in residential/commercial setups, Havells family of Time Switches is a fantastic energy saver. When paired with Modular Contactors, the Time Switches operate with utmost precision.

Automatic garden sprinkling system

EURO-II

Modular Contactors

AUTOMATIC MODULAR CONTACTOR

In automatic contactors the switching operation depends solely on the availability of coil supply. When coil supply is provided sufficient electromagnetic force is generated for closing the NO main contacts or opening the NC main contacts. In the absence of coil supply, the contacts revert to their original position.

Technical Specifications

Product		Automatic Contactors			
Rating In		16 A	25 A	40 A	63 A
Main contacts					
Standard		IEC/EN 61095	IEC/EN 61095	IEC/EN 61095	IEC/EN 61095
Rated operational voltage Ue		Single phase-250 V~, Three phase-400 V~	Single phase-250 V , Three phase-400 V~	Single phase-250 V~, Three phase-400 V~	Single phase-250 V~, Three phase-400 V~
Rated operational current le	AC-7a	16 A	25 A	40 A	63 A
	AC-7b	6 A	8.5 A	15 A	20 A
Electrical endurance		100,000	100,000	100,000	100,000
Switching operations frequency (per day)		100	100	100	100
Rated breaking \& making capacity (AC-7b)		48 A	68 A	120 A	160 A
Conditional Short Circuit Current		3 kA	3 kA	3 kA	3 kA
Type of Protection Device		MCB or gG fuse of adequate rating			
Rated duty		Continuous duty			
Control circuit					
Rated Control circuit voltage Uc		230 V ~	$230 \mathrm{~V} \sim$	230 V ~	230 V ~
Rated frequency		$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			
Control circuit voltage limits		0.2...0.75 Uc at $\leq 50^{\circ} \mathrm{C}$ drop-out, $0.85 . .1 .1 \mathrm{Uc}$ at $\leq 50^{\circ} \mathrm{C}$ operational			
Coil Heat Dissipation (W)	SP, DP	1.2 W	1.2 W	1.6 W	1.6 W
	TP, FP	-	1.6 W	2.1 W	2.1 W

Environment

Operating temperature			$-5^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$			
Storage temperature			$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$			
Pollution Degree			2	2	2	2
Degree of Protection			IP 20	IP 20	IP 20	IP 20
Insulation						
Rated insulation voltage			500 V ~	500 V ~	500 V ~	500 V ~
Rated impulse withstand voltage			4 kV	4 kV	4 kV	4 kV
Dielectric Strength			2.5 kV	2.5 kV	2.5 kV	2.5 kV
Terminals						
Tightening Torque (N-m)	Control		0.8	0.8	0.8	0.8
	Power Contacts		0.8	0.8	3.5	3.5
Terminal Capacity	Control		$2 \mathrm{~mm}^{2} \times 2.5 \mathrm{~mm}^{2}$ (Flexible), $2 \mathrm{~mm}^{2} \times 1.5 \mathrm{~mm}^{2}$ (Rigid)			
	Power Contacts	Flexible	$4 \mathrm{~mm}^{2}$	$4 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$
		Rigid	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$

Operation

Ordering Details

Poles	Rating (A) AC-7a	Rating (A) AC-7b	No. of Contacts	Width in Terms of Modular Size (18 mm)	Porduct Code
1 P	25	8.5		1	DHPRG025110M
2 P	16	6		1	DHPRF016120M
	25	8.5		1	DHPRF025120M
	40	15		2	DHPRF040220M
	63	20		2	DHPRF063220M
3 P	25	8.5		2	DHPRA025230M
	40	15		3	DHPRA040330M
	63	20		3	DHPRA063330M
4 P	25	8.5		2	DHPRC025240M
	40	15		3	DHPRC040340M
	63	20		3	DHPRC063340M
4 P	63	20		3	DHPRC063322M

Dimensions (mm)

EURO-II

Modular Contactors

AUTOMATIC MODULAR
CONTACTOR WITH
MANUAL OVERRIDE

Automatic Contactors with manual override knob have a manual over-ride switch to select between three function modes and 4 operating positions.

- Automatic Mode: It is the normal operating mode i.e. Contactor is operational (ON) when Coil voltage is applied and vice versa.
- ON Mode :
- Temporary "ON" position: When manual knob is not locked at ON position - the main contacts remain ON as long as coil supply is absent. When coil supply becomes available, the contactor automatically reverts to automatic mode.
Permanent "ON" position: Here, the contactor is operational (ON) irrespective of the availability of coil supply.
- OFF Mode: Here, the contactor is shutdown irrespective of the availability of coil supply.

Manual override option provides customers with the following features:
© Functional test prior to start/commissioning

- High degree of safety and availability in case of automation system failure
\bigcirc Testing or repairs can be carried out safely, reliably and quickly without interrupting other automatic functions.
© Force ON and Force OFF feature allows user to run high energy load during low teriff periods only, thereby over-ruling the normal operation of contactor at all times.

Technical Specifications

Product			Automatic Contactors with Manual Override			
Rating In		(A)	16	25	40	63
Main contacts						
Standard			IEC/EN 61095	IEC/EN 61095	IEC/EN 61095	IEC/EN 61095
Rated operational voltage Ue		(Vac)	Single phase-250, Three phase-400	Single phase-250, Three phase-400	Single phase-250, Three phase-400	Single phase-250, Three phase-400
Rated operational current le (A)	AC-7a		16	25	40	63
	AC-7b		6	8.5	15	20
Electrical endurance			100,000	100,000	100,000	100,000
Switching operations frequency (per day)			100	100	100	100
Rated breaking \& making capacity (AC-7b)			48	68	120	160
Conditional Short Circuit Current		(kA)	3	3	3	3
Type of Protection Device			MCB or gG fuse of adequate rating			
Rated duty			Continuous duty			
Control circuit						
Rated Control circuit voltage Uc		(Vac)	230	230	230	230
Rated frequency		(Hz)	50/60	50/60	50/60	50/60
Control circuit voltage limits			0.2...0.75 Uc at $\leq 50^{\circ} \mathrm{C}$ drop-out, 0.85...1.1 Uc at $\leq 50^{\circ} \mathrm{C}$ operational			
Coil Heat Dissipation (W)	SP, DP		1.2	1.2	1.6	1.6
	TP, FP		-	1.6	2.1	2.1

Environment

Operating temperature		$\left({ }^{\circ} \mathrm{C}\right)$	-5...+60	-5...+60	$-5 \ldots+60$	$-5 . .+60$
Storage temperature		$\left({ }^{\circ} \mathrm{C}\right)$	-40...+70	-40...+70	-40...+70	-40...+70
Pollution Degree			2	2	2	2
Degree of Protection			IP-20	IP-20	IP-20	IP-20
Insulation						
Rated insulation voltage		(Vac)	500	500	500	500
Rated impulse withstand voltage		(kV)	4	4	4	4
Dielectric Strength		(kV)	2.5	2.5	2.5	2.5
Terminals						
Tightening Torque (N-m)	Control		0.8	0.8	0.8	0.8
	Power Contacts		0.8	0.8	3.5	3.5
Terminal Capacity (mm^{2})	Control		2×2.5 (Flexible), 2×1.5 (Rigid)			
	Power	Flexible	4	4	16	16
	Contacts	Rigid	6	6	25	25

Operation (Explained w.r.t. NO Configuration)

Ordering Details

Dimensions (mm)

Auxiliary Contact

This Auxiliary allows indication of the "OPEN" or "CLOSED" position of the contactor power contacts. Auxiliary changeover contacts i.e. 1 NO/1 NO version is available which can be fitted on the right side of the device without needing any tools.

Technical Specification

Type	Indication
Standard Compliance	IEC 60947-5-1
Contacts Configuration	$1 \mathrm{NO}+1 \mathrm{NC}$
Mounting	On the right side of the contactor
Control Voltage	$\begin{gathered} A C-12-240 \mathrm{~V}, \mathrm{AC}-15-230 \mathrm{~V} \\ \mathrm{DC}-13-130 \mathrm{~V} \end{gathered}$
Operating Frequency	$50 / 60 \mathrm{~Hz}$
Contacts (Breaking capacities)	$\begin{gathered} 5 \mathrm{~A} \text { at } 240 \mathrm{Vac}, \operatorname{COS} \Phi=1, \\ 2 \mathrm{~A} \text { at } 230 \mathrm{~V}, \operatorname{COS} \Phi=1, \\ 1 \mathrm{~A} \text { at } 130 \mathrm{Vdc} \end{gathered}$
Operating Temperature	-5° to $50^{\circ} \mathrm{C}$
Storage Temperature	-40° to $70^{\circ} \mathrm{C}$
Insulation Voltage	500 V
Terminal Capacity	$2.5 \mathrm{~mm}^{2}$
Product Code	DSSRCX0147

Attachment

Fasten the auxiliary contact by slightly pressing it in place.

Dimensions (mm)

Removal

Circuit Diagram
Modular Contactors

$2 P$

3P

4 P

Contactor with auxiliary contact

Example

Figure shows the application of modular contactor with auxiliary contact: $1 \mathrm{NO}+1 \mathrm{NC}$ contact of auxiliary can be used for remote monitoring of contactor's status and control of alternate loads.

Modular Contactors Choice Table

Heating Application: Contactors rating to be chosen according to the power to be controlled and the number of operations a day.

Number of Operations/day	Maximum power for a given rating (kW)			
250 V Rated Voltage				
	16 A	25 A	40 A	63 A
25	3.4	5.4	8.6	14
50	3.4	5.4	8.6	14
75	2.9	4.6	7.3	12
100	2.7	4	6	9.5
400 V Rated Voltage				
25	10.5	16	26	41
50	10.5	16	26	41
75	8.9	14	22	35
100	6.7	11	17	26

Small Motor Application: Contactor rating to be chosen according to the power to be controlled.

Load and Rated Voltage		Maximum power for a given rating (kW)			
250 V Asynchronous single-phase motor	$\mathbf{1 6 ~ A}$	25 A	40 A	63 A	
400 V Asynchronous three-phase motor	0.95	1.4	2.5	4	
250 V Universal motor	2.7	4	7.5	15	

Lighting Application

- Modern Lighting system generate a high inrush current. Therefore, It is recommended to use the following choice table to calculate maximum lamp load that can be connected per current path on 230 V, 50 Hz Circuits.
- The table below shows the permissible number of lamps for each contactor considering the type, power and configuration of a given lamp.
- In case a 4 pole-contactor is used ($3 \mathrm{Ph}+\mathrm{N}$), the below mentioned quantity of lamps need to be multiplied by 1.73 to obtain maximum number of lamps for the contactor. The obtained quantity has to be divided by 3 to evaluate maximum lamps per pole.

Type of lamp	Lamp Load and Power Factor Correction capacitance	Permissible number of Lamp fittings for a single phase $230 \mathrm{~V}, 50 \mathrm{~Hz}$ Circuit and Acceptable Power per circuit.			
		16 A	25 A	40 A	63 A
Compact Fluorescent lamps(CFLs)					
CFL with external electronic ballast		1120 W-1400 W	1750 W-2190 W	3640 W-4300 W	5250 W
	5 W	210	330	670	1025
	7 W	150	222	478	750
	9 W	122	194	383	583
	11 W	104	163	327	477
	18 W	66	105	213	291
	26 W	50	76	153	202
CFL with integrated electronic ballast		800 W-900 W	1150 W-1300 W	2400 W-2675 W	3940 W-4000 W
	5 W	160	230	470	710
	7 W	114	164	335	514
	9 W	94	133	266	411
	11 W	78	109	222	340
	18 W	48	69	138	213
	26 W	34	55	100	151

Incandascent lamps					
Tungsten halogen lamps 230 V		1600 W-2050 W	2300 W-2900 W	4600 W-5200 W	6900 W-7500 W
	40 W	38	57	115	172
	60 W	30	45	85	125
	75 W	25	38	70	100
	100 W	19	28	50	73
	150 W	12	18	35	50
	200 W	10	14	26	37
		2100 W	3000 W	6000 W	8000 W
	300 W	7	10	18	25
	500 W	4	6	10	15
	1000 W	2	3	6	8
Halogen ELV(12 OR 24 V) with electronic transformer		1350 W-1730 W	1800 W-2250 W	3650 W-4250 W	5500 W-6000 W
	20 W	67	97	196	297
	25 W	27	42	82	123
	75 W	22	30	57	84
	100 W	17	24	45	64.8
Halogen ELV(12 OR 24 V) with Ferromagnetic Transforemer		$300 \mathrm{~W}-600 \mathrm{~W}$	$450 \mathrm{~W}-900 \mathrm{~W}$	850 W-1950 W	1250 W-2850 W
	20 W	5	23	42	63
	25 W	10	15	27	42
	75 W	8	12	23	35
	100 W	6	8	18	27
Fluorescent Tubes					
Single tube without parallel compensation		350 W-870 W	490 W-1295 W	1130 W-2500 W	1500 W-3800 W
	15 W	22	30	70	100
	18 W	22	30	70	100
	20 W	22	30	70	100
	36 W	20	28	60	90
	40 W	20	28	60	90
	58 W	13	17	35	56
	65 W	13	17	35	56
	80 W	10	15	30	48
	115 W	7	10	20	32
Single tube with parallel compensation		$200 \mathrm{~W}-800 \mathrm{~W}$	325 W-1290 W	650 W-2500 W	970 W-3550 W
	$15 \mathrm{~W}, 5 \mu \mathrm{~F}$	15	20	40	60
	$18 \mathrm{~W}, 5 \mu \mathrm{~F}$	15	20	40	60
	$20 \mathrm{~W}, 5 \mu \mathrm{~F}$	15	20	40	60
	$36 \mathrm{~W}, 5 \mu \mathrm{~F}$	15	20	40	60
	$40 \mathrm{~W}, 5 \mu \mathrm{~F}$	15	20	40	60
	$58 \mathrm{~W}, 7 \mu \mathrm{~F}$	10	15	30	43
	$65 \mathrm{~W}, 7 \mu \mathrm{~F}$	10	15	30	43
	$80 \mathrm{~W}, 7 \mu \mathrm{~F}$	10	15	30	43
	$115 \mathrm{~W}, 7 \mu \mathrm{~F}$	5	7	14	20
Single tube with electronic ballast		$1300 \mathrm{~W}-1400 \mathrm{~W}$	2000 W-2200 W	4000 W-4400 W	6000 W-6600 W
	18	74	111	222	333
	36	38	58	117	176
	58	25	37	74	111

Double tube with electronic ballast		1300 W-1400 W	2000 W-2200 W	4000 W-4400 W	6000 W-6600 W
	2×18	29	59	120	180
	2×36	22	32	64	97
	2x58	13	20	41	62

LEDs

Double tube with electronic ballast LED 230 V without driver, Not dimmable		120 W-520 W	170 W-760 W	$300 \mathrm{~W}-1360 \mathrm{~W}$	$500 \mathrm{~W}-1880 \mathrm{~W}$
		24	34	61	100
	7 W	22	32	57	94
	9 W	22	32	57	94
	12 W	22	32	57	94
	18 W	21	30	54	77
	22 W	20	28	51	67
	30 W	16	23	42	53
	40 W	13	19	34	47
LED 230V integrated driver,Dimmable		215 W-800 W	320 W-1200 W	575 W-2080 W	1440 W-2100 W
	5 W	46	64	115	180
	7 W	46	64	115	180
	9 W	4	5	10	176
	12 W	44	61	110	176
	18 W	34	48	87	145
	22 W	30	42	76	119
	30 W	25	35	64	64
	40 W	20	29	52	82

Discharge lamps

High pressure Sodium lamp /Metal lodide lamps with ferromagnetic ballast		600 W	850 W-1200 W	1450 W-2000 W	2250 W-3200 W
	35 W	16	24	42	64
	70 W	8	12	20	32
	150 W	4	7	13	18
	250 W	2	4	8	11
	400 W	1	3	5	8
	1000 W	0	1	2	3
High pressure Sodium lamp /Metal lodide lamps, ferromagnetic ballast with parallel compensation.		$450 \mathrm{~W}-1000 \mathrm{~W}$	650 W-2000 W	1100 W-4000 W	1750 W-6000 W
	$35 \mathrm{~W}, 6 \mathrm{mF}$	12	18	31	50
	$70 \mathrm{~W}, 12 \mu \mathrm{~F}$	6	9	16	25
	$150 \mathrm{~W}, 20 \mu \mathrm{~F}$	4	6	10	15
	$250 \mathrm{~W}, 32 \mu \mathrm{~F}$	3	4	7	10
	$400 \mathrm{~W}, 45 \mu \mathrm{~F}$	2	3	5	7
	$1000 \mathrm{~W}, 60 \mu \mathrm{~F}$	1	2	3	5
High pressure Sodium lamp /Metal lodide lamps with electronic ballast		$830 \mathrm{~W}-1400 \mathrm{~W}$	1350 W-2200 W	2400 W-4000 W	3600 W-6000 W
	35 W	23	38	68	102
	70 W	17	29	51	76
	150 W	8	14	26	40

High pressure Mercury Vapour lamp with Ferromagnetic Ballast		750 W-1000 W	1000 W-1600 W	1700 W-2800 W	2650 W-4200 W
	50 W	15	20	34	53
	80 W	10	15	27	40
	125 W	8	10	20	28
	250 W	4	6	10	15
	400 W	2	4	6	10
	700 W	1	2	4	6
High pressure Mercury Vapour lamp with Ferromagnetic Ballast and parallel compensation.		500 W-1400 W	750 W-1600 W	1400 W-3500 W	2150 W-5000 W
	$50 \mathrm{~W}, 7 \mu \mathrm{~F}$	10	15	28	43
	$80 \mathrm{~W}, 8 \mu \mathrm{~F}$	9	13	25	38
	125 W, $10 \mu \mathrm{~F}$	9	10	20	30
	250 W, $18 \mu \mathrm{~F}$	4	6	11	17
	$400 \mathrm{~W}, 40 \mu \mathrm{~F}$	3	4	8	12
	700 W, $60 \mu \mathrm{~F}$	2	2	5	7
Low pressure Sodium Vapour lamp		270 W-360 W	320 W-720 W	500 W-1100 W	850 W-1800 W
	35 W	5	9	14	24
	55 W	5	9	14	24
	90 W	3	6	9	19
	135 W	2	4	6	10
	180 W	2	4	6	10
Low pressure Sodium Vapour lamp with parallel compensation		100 W-180 W	175 W-360 W	350 W-720 W	550 W-1100 W
	$35 \mathrm{~W}, 20 \mu \mathrm{~F}$	3	5	10	15
	$55 \mathrm{~W}, 20 \mu \mathrm{~F}$	3	5	10	15
	$90 \mathrm{~W}, 25 \mu \mathrm{~F}$	2	4	8	11
	$135 \mathrm{~W}, 40 \mu \mathrm{~F}$	1	2	5	7
	$180 \mathrm{~W}, 45 \mu \mathrm{~F}$	1	2	4	6

The given information is entirely indicative, Considerable variations may occur depending on the electrical installation and equipments used. It is recommended that the implementation or configuration of the circuits must be done by experienced professionals with the expertise to determine the characteristics of the electrical installation (General characteristics of installations, In rush Current duration and value, Load etc). The manufacturer accepts no liability for the use made of this information.

INDICATORS LIGHTS

Havells Indicator Light is a new addition to the product range and can be used in both building and industrial installations. Indicator lights are designed for signaling the incoming supply.

Applications

- Distribution Box • Three Phase Tier DB •Kiosks • Load Line DB
- Meter Boxes • Testing Panels • Switch Boards • MIMIC Panels
- Control panels

Features

- Modular Design enables Indicator Lamp replacement with lens of different varieties Very simple installation and easy to replace
- Easy mounting on DIN rail $35 \mathrm{~mm} \times 7.5 \mathrm{~mm}$ long life \& durable

Color
Red, Amber, Blue, Green \& Clear
Execution
Single Pole (1P)
Specification
IS/IEC 60947-5-1

Technical Specification		IS/IEC 60947-5-1
Standard Conformity	Rated Operation Voltage	IS/IEC 60947-5-1
Contacts	Rating Electrical Power	$240 \mathrm{~V} \sim$
	Frequency	1.2 W
	Type of Lamp Socket	50 Hz
	Terminal Capacity	$\mathrm{E}-10 \mathrm{Thread}$
Light Indication	Color	$10 \mathrm{~mm}^{2}$
	Light	\square
Other Data	Source	\square
	Mounting on DIN Rail	Permanent
	Degree of Protection	Neon Lamp

Indicator Light
(In accordance with IS/IEC 60947-5-1) 240 V~, 50 Hz

Colour	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
Red	12 N	DHMCYSPX000
Amber	12 N	DHMCXSPX000

Indicator Light
(In accordance with IS/IEC 60947-5-1) 240 V~, 50 Hz

Colour	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
Blue	12 N	DHMCVSPX000
Green	12 N	DHMCZSPX000
Clear	12 N	DHMCWSPX000

	Indicator Light (Colour cap) Indicator Light - Spares		
	Colour	Std. / Master Packing (No. of Unit/s)	TP Cat. No.
	Red	1 N	
Amber	1 N	DCELDMCL001	
Blue	1 N	DCELDMCL001	
Green	1 N	DCELDMCL001	
Clear	1 N	DCELDMCL001	

Dimensions (in mm)

Easy To Replace Spares

EURO-II

Photovoltaic Switchgear Range

Photovoltaic
Systems in Focus

Solar energy is growing at a fast pace in India. And it will continue to do so in coming years across all its different applications - be it residential, commercial, or power plants.

Driving this growth is the ever-improving performance of photovoltaic (PV) systems which now guarantee economic soundness as well as profitability. Further it is a prime source of clean energy that helps reduce carbon footprint and build environmental sustainability. Assembled in solar modules and arrays, PV cells are silent, combustion-free, and emit no pollution. Absence of moving parts means they require little maintenance over their long life spans. Another attractive feature of PV systems is their versatility and convenience. They can be used in standalone applications and installed in places that are difficult and uneconomical to supply with traditional power lines. They can be installed virtually anywhere; on the ground, on flat or pitched roofs or attached to the sides of buildings.

The Indian government has also taken aggressive, long term stance for the promotion of PV electricity generation through a number of regional and national incentives and rebate plans.

However, for it to be considered a good investment, a photovoltaic system must be able to function efficiently for at least 20 years in all weather conditions and under blazing sun. This has challenged the system designers, manufacturers and standard organizations due to special conditions associated with PV system. These requirements have also been considered in the development of international protection standards for PV installations, which Havells, a leading name in electrical industry, has used to develop PV specific switchgear devices.

EURO-II

Photovoltaic Switchgear Devices

Havells gPV fuse range is dedicated to the protection of photovoltaic modules, strings or arrays and their connecting cables from reverse over-current and short-circuits and help minimize safety hazards. The PV fuse-link and fuse-disconnector will isolate the faulted PV string so the balance of the PV system can continue to generate electricity.

Today PV systems are growing in size, so have the corresponding voltage requirements. This increase in system voltage has typically been intended to minimize power loss associated with long conductor runs. Havells Photovoltaic devices are TUV tested to safely interrupt faulted circuits upto the demanding voltage level of 1000 Vdc and 40 kA short circuit faults.

Benefits

- Protects the modules and their connecting cables in the event of reverse currents
- Safely trips in case of fault current and reduce the risk of fire due to DC electric arcs
- Safely isolate the system when the fuse disconnector is open

Over-Current Faults in PV System

Unlike with other power sources, short-circuiting of the load would not result in dangerous over-currents in a PV system. Over-currents may, however, result from short-circuit faults in modules, junction boxes and module wiring or from earth faults in array wiring. Though PV modules are current-limited sources, they can be subjected to reverse over-currents supplied by either multiple parallel PV strings or from external sources (e.g. batteries) or both.

Figure shows a short-circuit fault in a PV module which causes reverse current to flow in that string. This occurs as the open-circuit voltage of faulted string is significantly lower than the open voltage of other parallel strings connected to the same inverter. The current flows from the healthy strings to the faulty one instead of flowing to the inverter and supplying power to the downstream load.

The effects of reverse currents may range from permanent damage of PV modules and reduced efficiency to broken conductors resulting in dangerous temperature rises, electric arcing and fire. PV module withstand capability is therefore tested in accordance with IEC 61730-2 standard and the PV module manufacturers provide the maximum reverse current value (lmod_reverse). PV modules are tested at a value equal to: $135 \% \times$ Imod_reverse for 2 hours: the module has to withstand this condition. It may also be specified in module specification sheet as the maximum series fuse rating.

Reverse current in the faulty string $=$ Total current of the remaining strings $=(\mathrm{Ns}-1)^{\star} I_{\mathrm{sc}}$

- There is no risk of reverse current when there is only one string.
- When there are two strings with same number of PV modules connected in parallel, the reverse current will be always lower than the maximum permissible reverse current

In both these cases there is no need for reverse current protection.

Following section seeks to provide a thumb rule for selection of fuse rating.

Fuse Rating Selection

Sodule Data
Short-Circuit current
of module at standard
test conditions

If Ns <3 and cable is rated at $\left.1.4{ }^{*}\right|_{\text {sc }}$

No string fuse is necessary for reverse-current protection provided the conductor is correctly sized. However battery fuses, array or sub-array fuses may be required as unpredicted faults can occur in systems with storage battery or inverters.

If Ns <3 and cable is not rated at $1.4{ }^{*} \mathrm{I}_{\mathrm{sc}}$	
Rated fuse current (Ue) $\geq 1.2 \times \mathrm{U}_{\mathrm{oc}, \text { sTc }}{ }^{*}$ Ns	Rated fuse current (In) \leq String cable rating

Note: The same calculation has to be applied for selecting gPV fuses at the recombination level or at the input of the inverter.

Photovoltaic Fuse Link

Havells offers PV cylindrical fuses of size $10.3 \mathrm{~mm} \times 38 \mathrm{~mm}$ and rated current from 2A-30 A, a special space-saving solution for protection of photovoltaic strings.

Applications

- PV string/array level protection
- In-line PV module protection
- Inverters
- Combiner/ Re-combiner boxes
- Battery charge controllers

Features

- High Breaking Capacity: for faults upto 40 kA

- High reliability: No downgrading of fuse characteristics over time.
- The energy released whilst eliminating the fault (fuse blowing) is contained within the cartridge (no degassing).
- Product dedicated to PV installations: Operating ranges adjusted for small over-currents specific to PV installations.
- Durable construction for enhanced system longevity
- Temperature cycle withstand capability

Standard Compliance

- IEC 60269-6:2010
- TUV Tested and approved
- CE marked

IEC 60269-6: Special operational class of gPV Fuses

Unlike typical AC systems, protection of PV strings poses unusual challenges due to high DC rated voltages, low load and low fault currents with the exception of capacitor discharge from the inverter or batteries which have a high peak and rate of rise. Normally the fault currents are only fractionally higher than system currents and the elimination of such low level overloads is a very challenging task for the fuse. Also current output varies rapidly depending on the irradiance incident on the modules during the day time and shading by cloud cover. PV fuses should not age in such situations in order to ensure high plant availability throughout the service life of the PV system. They must also be able to withstand high temperature fluctuations without damage. All this led to the development of gPV fuse-link ranges dedicated for photovoltaic string, sub array and array protection under such onerous conditions.
IEC 60269-6 Part 6: Supplementary requirements for fuse-links for the protection of solar photovoltaic energy systems, standardizes the performance and dimensions of fuse-links specifically designed to protect these new applications. IEC stipulates a minimum rated breaking capacity of 10 kA . Havells fuse-links are tested to qualify IEC 60269-6 and also meet high breaking capacity of 40 kA for effective protection.

Commonly used symbol for PV fuses - it is a combination of PV string \& fuse symbol.

Dimensions (mm)

Technical Specification

Rated Voltage	1000 Vdc
Rated Current (In)	A $, 3 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 12$ $\mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}$
Standard	IEC $60269-6: 2010$
Max. Interrupting Rating	40 kA
Dimensions	$\varnothing 10.3 \mathrm{~mm} \times 38 \mathrm{~mm}$
Class of operation	$\mathrm{gPV}($ Photovoltaic fuses)
Power Dissipation	$\leq 4.5 \mathrm{~W}$ at $0.7 \mathrm{In}, \leq 6.5 \mathrm{~W}$ at In

EURO-II

Ambient Temperature Compensation

PV module's output changes with the module temperature and also the amount of sun it is exposed to. The exposure is dependent on irradiance level, incline as well as shading effect from trees, buildings or clouds. Fuse links being thermal devices, they are influenced by ambient temperature. The current capability of the PV fuse links should be derated according to the curve shown:

Time-Current Characteristics

Conventional Non-fusing current $\left(\mathrm{I}_{\mathrm{n} f}\right)$	$1.13^{*} \ln$	Test current at which the fuse must not trip for one hour
Conventional fusing current $\left(\mathrm{l}_{\mathrm{f}}\right)$	$1.45{ }^{*} \ln$	Test current at which the fuse must trip within one hour

Ordering Details

S. No.	Rated Current (A)	Ordering Code	Std. / Master Packing (No. of Unit/s)
1	2	DHHRHP0002	10 N
2	3	DHHRHP0003	10 N
3	4	DHHRHP0004	10 N
4	5	DHHRHP0005	10 N
5	6	DHHRHP0006	10 N
6	8	DHHRHP0008	10 N
7	10	DHHRHP0010	10 N
9	12	DHHRHP0012	10 N
10	20	DHHRHP0015	10 N
12	25	DHHRHP0025	10 N

Photovoltaic Fuse-Disconnector

Havells offers Photovoltaic Fuse Disconnector for safe disconnection and protection of solar systems, from small installations to large PV farms. It is not designed for load break but is ideal for isolating photovoltaic module strings for maintenance. It has been designed for up to 1000 V direct current voltage with DC-PVO utilization category. It is suitable to house cylindrical gPV $10.3 \mathrm{~mm} \times 38 \mathrm{~mm}$ fuse up to 30 A .

Standard Conformity

- IEC 60947-3:2008, Amd. 1:2012, Amd. 2:2015 in conjunction with IEC 60947-1:2007, Amd. 1:2010, Amd. 2:2014
- TUV Tested and Certified
- CE Marked

No fuse pullers or tools required for fuse removal.

High Short-Circuit withstand rating - 40 kA

All plastic parts are made of material resistant to extremely high temperatures. Glow wire $960^{\circ} \mathrm{C}$ for insulating material that is retaining current carrying parts and $650^{\circ} \mathrm{C}$ otherwise.

Safety terminals guide the cable towards cage terminal, ensuring proper error-free connections.

Bi-stable din-clip for easy mounting on a 35 mm Din rail \& convenient removal.

Complete protection against
touch according to IP 20.

Convenient opening.

Technical Specification

Reference standard	IEC 60947-3:2008, AMD1:2012, AMD2:2015
Rated operational voltage Ue	1000 Vdc
Rated insulation voltage Ui	1000 Vdc
Rated impulse withstand voltage Uimp	8 kV
Rated operational current le	30 A
Utilization Category	DC-PVO
Suitable for Isolation	Yes
Load break disconnect	No
Fuse rating	$\leq 30 \mathrm{~A}$
Rated conditional short-circuit current	40 kA
Conventional free air thermal current Ith	30 A
Kind of protective device	gPV fuse-link, \quad ¢10.3*38 mm
Blown fuse indicator operating voltage	50-1000 Vdc
Rated power acceptance	$\leq 6.5 \mathrm{~W}$
Degree of protection	IP 20
Working Temperature	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Pollution degree	3
Altitude above sea	$\leq 2000 \mathrm{~m}$
Mounting	35 mm DIN Rail
Tightening torque	2 Nm
Terminal Capacity	1 SQ. mm - 16 SQ. mm

Dimensions (mm)

Ordering Details

Rating	Poles	Blown fuse indicator	Product Code	Std. / Master Packing (No. of Unit/s)
30 A	1 P	No	DHFCSN301K	10 N
30 A	1 P	Yes	DHFDSN301K	10 N

EURO-II

Photovoltaic Switchgear Devices

Photovoltaic systems are often located in isolated and exposed locations and generally have a large surface area. Thus the threat of lightning is quite common. The risk is multiple: direct effect (lightning strike on the panels) and indirect (surge on cells, solar chargers, inverters), or on other lines (data communication). Lightning surges and switching operations or power line faults in the upstream power supply system must also be taken into account.

The most noticeable effects from discharges are catastrophic damage with visible carbonization of system components. Less noticeable are the effects on the electrical system caused by the long term exposure to repeated high transient voltages. These transients may cause premature failure of modules and inverters, resulting in substantial repair and/or replacement costs, as well as lost generation revenue. While solar systems will always remain in highly exposed environments, protection against over-voltage surges can help ensure a long operational life.
SPDs installed at key locations will protect major components such as inverters, arrays, equipment in combiner boxes, measurement and control equipment, instrumentation systems, and communications systems from being affected by lightning induced current surges. These devices have an added benefit of protecting against utility generated transients. Surge protection should be applied to both the AC and DC sides of the inverter, as well as on applicable control and communication circuits.

Features:

- Visual as well as Remote end-of-life indicators.
- Cartridge's connection with base is secure \& foolproof. Cartridge's mechanically loded for correct fitment with base.
- Simple, Professional Installation of Arrester Modules
- High Terminal Capacity - $35 \mathrm{~mm}^{2}$ for Ease of Installation.
- Bi-stable Snap-pusher for Easy Installation and Extractioin from DIN-rail.
- TUV Tested and approved. CE compliant.

Range
DC SPD's
Type 1+2
Type 2
AC SPD's
Type $1+2$
Type 2
Dataline SPD
$6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$

Remote Signaling Contact

- Option to remotely monitor the status of the surge protector; get a signal when cartridge has reached end of life.
- Simplified cabling thanks to a single terminal for monitoring all poles.

Pluggable Cartridges

- Faulty cartridges can be replaced without changing the entire SPD.
- All cartridges are marked with characteristics for ease of maintenance.

Satisfactory operation
Cartridge must be replaced

End of Life Indicator
Local Indication on Cartridge: Green shows satisfactory operation and Red indicates that Cartridge must be replaced.

Y-configuration for better protection
PV SPDs have a series connection of two MOVs between all potentials. Even in extreme cases, when one of the varistor fails, the flow of current can reliably continue through the second without being interrupted, thus ensuring maximum safety.

Surge Protection in Photovoltaic Installations

The appropriate SPD selection to protect PV installation verity is dependent on whether the PV array is protected by an external Lightning protection system (LPS), and if so, whether the minimum separation distance (IEC 62305-3) between the LPS and the metallic parts of the PV array has been kept.

	DC Side		AC Side	
Location	Field Combiner Box	2 Re-combiner Box (DC side of inverter)	3 AC Box (AC side of inverter)	4 Main LV switch board (Delivery point)
Protection function	SPD protects panels and strings from atmospheric surges	SPD protects inverter from atmospheric surges	SPD protects inverter from atmospheric surges and grid- generated surges	SPD protects the AC side of electrical installation from atmospheric surges and grid-generated surges
SPD Requirement	Required if LDC $<$ 10 m	Always required	Required if LAC $<$ 10 m	Always required
Type of SPD	Use Type 1+2 SPD if separation distance according to IEC 62305 is not observed. Else use Type 2 SPD.	Type 2 SPD	Type 1+2 SPD if there is risk of direct lightning strike on the system (e.g. installations with lightning rods/ mains overhead line). Else use Type 2 SPD.	

LDC = Distance between solar panels and inverter
LAC = Distance between inverter and mains LV Switch-board
Note: To be efficient, SPD connection cables to the upstream network and between the SPD's earth terminal block and ground bus-bar must be as short as possible.

Type $1+2$ Photovoltaic Surge Protection Devices

The Type $1+2$ PV SPD range allows the DC side of each PV installation i.e. arrays and inverters, to be effectively protected against over voltages, both due to direct lightning strikes ($10 / 350 \mu$ s discharge current wave) as well as indirect lightning strike and switching surges ($8 / 20 \mu$ s discharge current wave).

Range

Type 1+2 Photovoltaic Surge Protection Devices

Specification

EN 50539-11:2013

Features

- Tested and Approved by TUV.
- High operating voltages 1200 Vdc.
- High Discharge Current: Imax 60 kA for 4-module SPD (limp 12.5 kA) Imax 40 kA for 3-module SPD (limp 6 kA)
- Remote signalling contact allows alarm report of cartridge failure to a supervision station.
- "Y" type circuit for a better protection.
- Both common \& differential mode of protection

Technical Specification

	Type 1+2 (12.5 kA)	Type 1+2 (6 kA)
Standard Compliance	EN 50539-11	EN 50539-11
Type	Type 1+2	Type 1+2
Max Continuous Operating DC Voltage Ucpv	1200 Vdc	1200 Vdc
Lightning Impulse (10/350 microsecond) limp	12.5 kA	6 kA
Nominal Discharge Current (8/20 microsecond) In	20 kA	20 kA
Max Discharge Current (8/20 microsecond) Imax	60 kA	40 kA
Voltage Protection Level Up	$<4 \mathrm{kV}$	$<4 \mathrm{kV}$
Short Circuit Current with Stand Iscpv	1000 A	1000 A
Leakage Current	$<100 \mu \mathrm{~A}$	$<100 \mu \mathrm{~A}$
Response Time	$<25 \mathrm{~ns}$	$<25 \mathrm{~ns}$
Operating State/Fault Indication	Green/No Light	Green/Red
Thermal Disconnector	Internal	Internal
Fuses	Without	Without
Operating Temperature Range	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$
Cross-section Area	4-35 SQ. mm	4-35 SQ. mm
For Mounting on	35 mm Din Rail	35 mm Din Rail
Enclosure Material	Thermoplastic UL94-V0	Thermoplastic UL94-V0
Degree of protection	IP 20	IP 20
Mode of Protection	IPE residual current	Icpv

Circuit Diagram:

Type $1+2$ SPD (6 kA)

Type $1+2$ SPD (12.5 kA)

Dimensions:

Type $1+2$ SPD (6kA)

Type $1+2$ SPD (12.5kA)

Connections:

Type 1+2 Photovoltaic Surge Protection Device (limp 12.5 kA)

Order Code	Ucpv (V)	$\ln (k A)$	$\operatorname{limp}(k A)$	$\operatorname{Imax}(k A)$	Up (kV)	Remote Signaling
DHSDANCC6012H	1200 Vdc	20	12.5	60	4	No
DHSDARCC6012H	1200 Vdc	20	12.5	60	4	Yes

Type 1+2 Photovoltaic Surge Protection Device (limp 6 kA)

Order Code	Ucpv (V)	$\ln (\mathrm{kA})$	$\operatorname{limp}(\mathrm{kA})$	Imax (kA)	Up (kV)	Remote Signaling
DHSDANCB4012H	1200 Vdc	20	6	40	4	No
DHSDARCB4012H	1200 Vdc	20	6	40	4	Yes
Cartridges						
Order Code	Pole	Ucpv (V)	In (kA)	limp (kA)	Imax (kA)	Up (kV)
DSSRCX0154	-	1200 Vdc	20	6	40	4

Type 2 Photovoltaic Surge Protection Devices

The Type 2 PV SPD range allows the DC side of each PV installation to be effectively protected against over voltages due to indirect lightning strikes and switching surges ($8 / 20 \mu s$ discharge current wave).

Range

Type 2 Photovoltaic Surge Protection Devices

Specification

EN 50539-11: 2013
Features

- Tested and Approved by TUV.
- High operating voltages 1200 Vdc
- Remote signalling contact allows alarm report of cartridge failure to a supervision station.
- High Discharge Current: Maximum discharge current 40 kA .
- Both Common and Differential Mode Protection.
- Remote Monitoring Option.

Technical Specification	EN $50539-11$
Standard Compliance	Type 2
Type	1200 Vdc
Max Continuous Operating DC Voltage Ucpv	20 kA
Nominal Discharge Current (8/20 microsecond) In	40 kA
Max Discharge Current (8/20 microsecond) Imax	$<4 \mathrm{kV}$
Voltage Protection Level Up	1000 A
Short Circuit Current Withstand Iscpv	$<100 \mu \mathrm{~A}$
Leakage Current	$<25 \mathrm{~ns}$
Response Time	$-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$
Operating Temperature Range	$5-95 \%$
Humidity	Indoor
Installation	Internal
Thermal Disconnector	Without
Fuses	Green/Red
Operating State/Fault Indication	$4-35$ SQ. mm
Cross-section Area	35 mm Din Rail
For Mounting on	Thermoplastic UL94-V0
Enclosure Material	IP 20
Degree of protection	

Circuit Diagram:

Dimensions:

Connections:

Type 2 Photovoltaic Surge Protection Device

Order Code	Ucpv (V)	$\operatorname{In}(k A)$	$\operatorname{Imax}(k A)$	Up (kV)	Remote Signaling
DHSD2NCN4012H	1200 Vdc	20	40	4	No
DHSD2RCN4012H	1200 Vdc	20	40	4	Yes

Cartridges

Order Code	Pole	Ucpv (V)	$\ln (k A)$	$\operatorname{Imax}(k A)$	Up (kV)
DSSRCX0155	-	1200 Vdc	20	40	4

EURO-II

Industrial Plug \& Socket

Standard Compliance	IS/IEC $60309-1,2$
Current Rating	16 to 63 A
Pin Configurations	$2 \mathrm{P}+\mathrm{E}, 3 \mathrm{P}+\mathrm{E}^{*}, 3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Earth Contact Position	$6 \mathrm{H}, 3 \mathrm{H}^{*}$
Rated Frequency	$50 / 60 \mathrm{~Hz}$
Rated Voltage	$220-250 \mathrm{~V} \sim(2 \mathrm{P}+\mathrm{E}), 380-440 \mathrm{~V} \sim(3 \mathrm{P}+\mathrm{E})^{*}, 220 / 380-240 / 415 \mathrm{~V} \sim(3 \mathrm{P}+\mathrm{N}+\mathrm{E})$
Insulation Voltage	690 V
Housing Material	Flame Retardant PA6
Contact Material	Nickel Plated Brass
Glow Wire Test	$850^{\circ} \mathrm{C}$ for insulated parts necessary to retain current carrying parts, $650^{\circ} \mathrm{C}$ for housing
Protection Degree CC	$\mathrm{IP} 44, \mathrm{IP} 67$
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

*Refer Page 111 for detailed specification of special plug \& connectors for reefer application.
These are heavy-duty industrial plugs and connectors, used to provide power in areas exposed to dust, water or rough use having high demands for safety, reliability and durability.
The plugs and connectors adopt 'preventing incorrect insertion' design and their high grade thermoplastic material ensures flame-retardant properties, good electric insulation, high impact resistance, dustproof, damp-proof and watertight connections. They have an ergonomic design and ample wiring space for comfortable installation. Further, they provide high protection from indirect contact since ground contact is the first to be established and the last to separate.

Safe Unlocking
Unlock with just a tool. Marking indicates the location of locking clip.

Fast Assembly
Base and cover can be fixed with quick lock system without using screws, thereby saving time.

Superior Cable Retention Cable glands seal the cable as well as secure a safe grip, thus protecting against undue loosening.

Secure Connections
Nickel plated brass pins and contact tubes for high quality electrical contact as well as convenient insertion and withdrawal

Industrial Plug

IP-44

- ${ }^{1}$ |P-67

Low Rating (16 A \& 32 A)

	16 A		32 A	
	2P+E	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	2P+E	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	120	133	150	155
b	57	75.5	80.5	89.5
c	15	17	22	22
d	53.5	68	72	79.5
Cable Size	$\begin{gathered} 1 \mathrm{SQ} . \mathrm{mm} \\ \sim 2.5 \mathrm{SQ} . \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { 1 SQ. mm } \\ \sim 2.5 \mathrm{SQ} . \mathrm{mm} \end{gathered}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$
Order Code	DHQBA63016	DHQBA65016	DHQBA63032	DHQBA65032
Std. / Master Packing (No. of Unit/s)	4 N	4 N	4 N	4 N

Low Rating (16 A \& 32 A)

	16 A		32 A	
	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	120	133	150	155
b	71	87	93	99.5
C	15	17	22	22
Cable Size	$\begin{aligned} & \text { 1 SQ. mm } \\ & \sim 2.5 \text { SQ. mm } \end{aligned}$	$\begin{gathered} \text { 1 SQ. mm } \\ \sim 2.5 \text { SQ. mm } \end{gathered}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$
Order Code	DHQBB63016	DHQBB65016	DHQBB63032	DHQBB65032
Std. / Master Packing (No. of Unit/s)	4 N	4 N	4 N	2 N

- $\|_{\text {| P-67 }}$

High Rating (63 A)

	63 A	63 A
	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)		
a	260	260
b	113.5	113.5
c	32	32
Cable Size	6 SQ. mm ~ 16 SQ. mm	6 SQ. $\mathrm{mm} \sim 16 \mathrm{SQ} . \mathrm{mm}$
Order Code	DHQBB63063	DHQBB65063
Std. / Master Packing (No. of Unit/s)	1 N	1 N

Industrial Connector

Low Rating (16 A \& 32 A)

	16 A		32 A	
	2P+E	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	130	142	162	163.5
b	75.6	89.5	94	100
c	15	17	22	22
d	52	62.8	64.6	71
Cable Size	$\begin{gathered} \text { 1 SQ. mm } \\ \sim 2.5 \text { SQ. mm } \end{gathered}$	$\begin{gathered} \text { 1 SQ. mm } \\ \sim 2.5 \text { SQ. mm } \end{gathered}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$
Order Code	DHQDA63016	DHQDA65016	DHQDA63032	DHQDA65032
Std. / Master Packing (No. of Unit/s)	4 N	4 N	4 N	4 N

Low Rating (16 A \& 32 A)

	16 A		32 A	
	$2 \mathrm{P}+\mathrm{E}$	$3 P+N+E$	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	134	146	166	171
b	78.5	93	98	104
c	15	17	22	22
d	71	86.5	93.5	99.5
Cable Size	$\begin{gathered} \text { 1 SQ. mm } \\ \sim 2.5 \text { SQ. mm } \end{gathered}$	$\begin{gathered} \text { 1 SQ. mm } \\ \sim 2.5 \text { SQ. mm } \end{gathered}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 6 \text { SQ. mm } \end{aligned}$
Order Code	DHQDB63016	DHQDB65016	DHQDB63032	DHQDB65032
Std. / Master Packing (No. of Unit/s)	4 N	4 N	4 N	2 N

- 1 IP-67

High Rating (63 A)

	63 A
	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)	
a	260
b	113.5
c	32
c	111
Cable Size	DHQDB65063
Order Code	1 N
Std. / Master Packing (No. of Unit/s)	

EURO-II

Industrial Plug \& Socket

INDUSTRIAL WALL-
MOUNTED SOCKET
\& PANEL SOCKET

Standard Compliance	IS/IEC 60309-1, 2
Current Rating	16 A to 63 A
Pin Configurations	$2 \mathrm{P}+\mathrm{E}, 3 \mathrm{P}+\mathrm{E}^{\star}, 3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Earth Contact Position	$6 \mathrm{~h}, 3 \mathrm{~h}^{\star}$
Rated Frequency	$50 / 60 \mathrm{~Hz}$
Rated Voltage	$220-250 \mathrm{~V} \sim(2 \mathrm{P}+\mathrm{E}), 380-440 \mathrm{~V} \sim(3 \mathrm{P}+\mathrm{E})^{\star}, 220 / 380-240 / 415 \mathrm{~V} \sim(3 \mathrm{P}+\mathrm{N}+\mathrm{E})$
Insulation Voltage	690 V
Housing Material	Flame Retardant PA6
Contact Material	Nickel Plated Brass
Glow Wire Test	$850^{\circ} \mathrm{C}$ for insulated parts necessary to retain current carrying parts, $650^{\circ} \mathrm{C}$ for housing
Protection Degree CC	$\mathrm{IP} 44, \mathrm{IP} 67$
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

*Refer Page 111 for detailed specification of special sockets for reefer application.

Havells provides a comprehensive range of wall-mounted sockets and panel-mounted sockets, used to provide power in areas exposed to dust, water or rough use having high demands for safety, reliability and durability.
They adopt 'preventing incorrect insertion' design and their high grade thermoplastic material ensures flame-retardant properties, good electric insulation, high impact resistance, dustproof, damp-proof and watertight connections. Nickel plated contacts provide better corrosion resistance in aggressive environments and at high degrees of air humidity. They have an ergonomic design and ample wiring space for comfortable installation. Further, they provide high protection from indirect contact since ground contact is the first to be established and the last to separate.

Quick Installation
During installation, it is only required to dismantle the cover top of the enclosure.

Ease of Assembly
Separable and sealed type design structure for the enclosure of sockets, which can be disassembled and assembled conveniently, safely and quickly.

Hinged Cover
Auto locking of socket flap on plug removal. Reduces potential for accumulation of dust and moisture inside cover.

Terminal Identification
Clear terminal marking for phase, neutral \& earth.
Double Secure Wiring
Higher rating has two screws per terminal for fail-safe connections.

Industrial Wall-mounted Socket

IP-44

- ${ }^{1}$ IP-67

Low Rating (16 A \& 32 A)

	16 A		32 A	
	2P+E	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	2P+E	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	117	118.5	120	119
b	142	114.5	156	158
c	84.4	84.4	84.4	84.4
d	60	60	60	60
e	52	52	52	52
Cable Size	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$
Order Code	DHQSA63016	DHQSA65016	DHQSA63032	DHQSA65032
Std. / Master Packing (No. of Unit/s)	2 N	2 N	2 N	2 N

Low Rating (16 A \& 32 A)

	16 A		32 A	
	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	2P+E	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	101	107	114	116
b	150	151	162	163
c	80	80	80	80
d	93.5	93.5	93.5	93.5
Cable Size	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$
Order Code	DHQSB63016	DHQSB65016	DHQSB63032	DHQSB65032
Std. / Master Packing (No. of Unit/s)	2 N	2 N	2 N	2 N

- ${ }^{1}$ |P-67

High Rating (63 A)

	63 A
	3P+N+E
Dimensions (mm)	
a	171
b	170
c	230
d	118
e	135
f	105
Cable Size	6 SQ. mm ~25 SQ. mm
Order Code	DHQSB65063
Std. / Master Packing (No. of Unit/s)	1 N

Industrial Panel Socket

$\triangle \mathrm{IP}-44$

Low Rating (16 A \& 32 A)

	16 A		32 A	
	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	75.5	75.5	75.5	80
b	86.5	86.5	86.5	90
c	61	61	61	65
d	61	61	61	70
e	36	40	55	51
f	37	41	42	45
g	57.5	64	64	70
h		35	35	37.5
i		38	38	40.5
R		32	32	35
r		7	7	7
Cable Size	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$
Order Code	DHQCA63016	DHQCA65016	DHQCA63032	DHQCA65032
Std. / Master Packing (No. of Unit/s)	6 N	4 N	4 N	4 N

• 1 |P-67

Low Rating (16 A \& 32 A)

High Rating (63 A)

Low Rating (16 A \& 32 A) and High Rating (63 A)

	16 A		32 A		63 A
	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)					
a	75.5	75.5	75.5	80	100
b	86.5	86.5	86.5	90	110
c	61	61	61	65	80
d	61	61	61	70	85
e	41	41.5	52.5	51.5	66.5
f	45	46	49.5	52.5	77.5
g	64	64	64	70	81
h	35	35	35	37.5	42.5
i	38	38	38	40.5	45.5
R	32	32	32	35	9
r	7	7	7	7	40.5
Cable Size	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & 6 \text { SQ. mm } \\ & \sim 25 \text { SQ. mm } \end{aligned}$
Order Code	DHQCB63016	DHQCB65016	DHQCB63032	DHQCB65032	DHQCB65063
Std. / Master Packing (No. of Unit/s)	4 N	4 N	4 N	3 N	1 N

EURO-II

Industrial Plug \& Socket

INDUSTRIAL
INTERLOCKING
SOCKET

Standard Compliance	IS/IEC $60309-1,2,4$
Current Rating	16 A to 63 A
Pin Configurations	$2 \mathrm{P}+\mathrm{E}, 3 \mathrm{P}+\mathrm{E}^{\star}, 3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Earth Contact Position	$6 \mathrm{~h}, 3 \mathrm{~h}^{\star}$
Rated Frequency	$50 / 60 \mathrm{~Hz}$
Rated Voltage	$220-250 \mathrm{~V} \sim(2 \mathrm{P}+\mathrm{E}), 380-440 \mathrm{~V} \sim(3 \mathrm{P}+\mathrm{E})^{\star}, 220 / 380-240 / 415 \mathrm{~V} \sim(3 \mathrm{P}+\mathrm{N}+\mathrm{E})$
Insulation Voltage	690 V
Housing Material	Flame Retardant PA6
Contact Material	Nickel Plated Brass
Glow Wire Test	$850^{\circ} \mathrm{C}$ for insulated parts necessary to retain current carrying parts, $650^{\circ} \mathrm{C}$ for housing
Protection Degree CC	$\mathrm{IP} 44, \mathrm{IP} 67$
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

*Refer Page 111 for detailed specification of special sockets for reefer application.

These are heavy-duty industrial sockets with additional safety due to mechanical interlocking feature. They are used to provide power in areas exposed to dust, water or rough use having high demands for safety, reliability and durability.
The interlocking sockets also adopt 'preventing incorrect insertion' design and their high grade thermoplastic material ensures flame-retardant properties, good electric insulation, high impact resistance, dustproof, damp proof and watertight connections. Nickel plated contacts provide better corrosion resistance in aggressive environments and at high degrees of air humidity. Further, they provide high protection from indirect contact since ground contact is the first to be established and the last to separate.

Key-Lock Facility
Switch with handle which can be padlocked from outside in position
' O ' and ' 1 '.

Mechanical Interlocking
Switch can be operated only when it is plugged-in properly. The plug can only be pulled out when the switch is 'OFF'. This prevents unintended withdrawal and ensure safe operation.

Comfortable Installation
Ample wiring space is provided.

Sockets with MCB/RCCB/RCBO Protection Provision to install protection devices (upto 4 module width) for overload/short-circuit/leakage fault protection. Transparent window allows user to easily view the status of switching devices.

Industrial Interlocking Socket

\triangle IP-44

- ${ }^{1}$ IP-67

- ${ }^{1}$ |P-67

Low Rating (16 A \& 32 A)

	16 A		32 A	
	$2 \mathrm{P}+\mathrm{E}$	$3 P+N+E$	$2 \mathrm{P}+\mathrm{E}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
Dimensions (mm)				
a	167	167	167	167
b	120	120	120	120
c	108	112	118	120.5
d	128	128	128	128
e	102.8	102.8	102.8	102.8
f	121	121	121	121
g	71	71	71	71
Cable Size	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$
Order Code	DHQIA63016	DHQIA65016	DHQIA63032	DHQIA65032
Std. / Master Packing (No. of Unit/s)	1 N	1 N	1 N	1 N

Low Rating (16 A \& 32 A)

	16 A		32 A	
	2P+E	$3 P+N+E$	$2 \mathrm{P}+\mathrm{E}$	$3 P+N+E$
Dimensions (mm)				
a	135.8	135.8	142.5	147
b	248	248	256.5	256.5
c	119	119	119	119
d	101	101	101	101
e	208	208	208	208
Cable Size	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 1.5 SQ. mm } \\ & \sim 4 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$	$\begin{aligned} & \text { 2.5 SQ. mm } \\ & \sim 10 \text { SQ. mm } \end{aligned}$
Order Code	DHQWB63016	DHQWB65016	DHQWB63032	DHQWB65032
Std. /Master Packing (No. of Unit/s)	1 N	1 N	1 N	1 N

High Rating (63 A)
Provision to install switching devices (MCB/RCCB/RCBO) upto 4 module width

	63 A	
	$2 P+E$	$3 P+\mathrm{N}+\mathrm{E}$
Dimensions (mm)		
a	203	203
b	467	467
c	162.5	162.5
d	115	115
Cable Size	6 SQ. mm ~25 SQ. mm	6 SQ. mm ~25 SQ. mm
Order Code	DHQEB63063	DHQEB65063
Std. / Master Packing (No. of Unit/s)	1 N	1 N

Plug \& Socket for Reefer Container

On ships and in harbor terminals, power loss spells disaster. To meet with strict requirement of these applications, Havells has watertight (IP-67) plug \& sockets, with earth sleeve in 3 O'clock position, according to IEC/EN 60309-2.

Plug

(32 A, $380 \mathrm{~V}-440 \mathrm{~V} \sim, 3 \mathrm{P}+\mathrm{E}$)

Dimensions (mm)	
a	150
b	93
c	22
Cable Size	2.5 SQ. mm
	~ 6 SQ. mm
Order Code	DHQBB34032
Std. / Master Packing (No. of Unit/s)	4 N

Connector
(32 A, $380 \mathrm{~V}-440 \mathrm{~V} \sim, 3 P+E$)

Dimensions (mm)	
a	166
b	98
c	22
d	93.5
Cable Size	2.5 SQ. mm
Order Code	~ 6 SQ. mm
Std. / Master Packing (No. of Unit/s)	4 N

Wall Mounted Socket

(32 A, 380 V-440 V~, 3P+E)

Dimensions (mm)	
a	114
b	162
c	80
d	93.5
Cable Size	2.5 SQ. mm $\sim 10 ~ S Q . ~ m m ~$
Order Code	DHQSB34032
Std. / Master Packing (No. of Unit/s)	2 N

Panel Socket

(32 A, $380 \mathrm{~V}-440 \mathrm{~V} \sim, 3 \mathrm{P}+\mathrm{E}$)

Dimensions (mm)	
a	75
b	60
c	57.5
d	29.2
e	64.5
f	97.5
Cable Size	2.5 SQ. mm
Order Code	~ 10 SQ. mm
Std. / Master Packing (No. of Unit/s)	4 N

Inter locking Socket
(32 A, 380 V-440 V~, 3P+E)

Dimensions (mm)	
a	142.5
b	256.5
c	119
d	101
e	208
Cable Size	2.5 SQ. mm $\sim 10 ~ S Q . ~ m m ~$
Order Code	DHQWB34032
Std. / Master Packing (No. of Unit/s)	1 N

EURO-II

Industrial Plug \& Socket

SOLUTION WITH
INSULATED PLUG \&
SOCKET

Industrial plug and socket solutions are an important part of new age manufacturing, hospitality and construction industry. These devices extend a high grade of protection, with flexibility of installation near to the site. Havells industrial plug and socket solutions are designed with an in-depth understanding of Indian subcontinent conditions. The solution is IS 8623 compliant and fulfills the requirement of safe and durable connection in rough environments - whether commercial or industrial. User can conveniently choose and install any of the switchgear devices (MCB/RCCB or Isolator) for protection of downstream equipment. The solution comes with factory-fitted industrial plug and internal wiring kit for easy and quick assembly.

Features :

- Conforms to IS 8623, IS/IEC 60309-1/2.
- IP40 ingress protection. Plugs and sockets are IP 44 compliant.
- Suitable for surface and flush mounting.
- Havells 7T powder coating process ensures excellent aesthetics and long life.

Solution with Insulated Plug \& Socket

32 A 3P+N+E

Current	$: 32 \mathrm{~A}$
Voltage	$: 415 \mathrm{Vac}$
Pins	$: 5 \mathrm{PIN}(3 P+N+E)$
Std. / Master Packing	
(No. of Unit/s) $:$ Order Code $:$ OHDPBTN032	

32 A 2P+E

Current	$: 32 \mathrm{~A}$
Voltage	$: 240 \mathrm{Vac}$
Pins	$: 3$ PIN (2P+E)
Std. / Master Packing (No. of Unit/s)	$: 1 \mathrm{~N}$
Order Code	$:$ DHDPBDP032

16 A 3P+N+E

Current	$: 16 \mathrm{~A}$
Voltage	$: 415 \mathrm{Vac}$
Pins	$: 5 \mathrm{PIN}(3 \mathrm{P}+\mathrm{N}+\mathrm{E})$
Std. / Master Packing	
(No. of Unit/s) $: 1 \mathrm{~N}$ Order Code $:$	DHDPBTN016

16 A 2P+E

Note: MCB/RCCB/Isolator are not a part of standard solution and have to be ordered separately.

EURO-II

Distribution Boards

After the huge success of the Metalica and QVE Distribution Board ranges, Havells is set to launch a new distribution board range DCORA.
Much like their title, these distribution boards will add to the beauty of our walls, our homes. The new series has been designed to cater the aesthetic needs of one's home while maintaining the performance standards and simplicity of use requirements.
DCORA has been engineered to ensure safety of electrical appliances as well as human life from electrical hazards, while giving the user the opportunity to stand out among his peers. DCORA offers the user to choose between 3 distribution board doors- DCORA Klass Leather, DCORA Sepia Rosewood and DCORA Pearl Stone. All of these doors have been designed with such class that they blend themselves with their surroundings with absolute ease; making it the distribution board of choice.

Magnetic door lock with easy to open door handle

Remove link to use split neutral provision

- Use 1st neutral link for mains supply
- Use 2nd neutral link for stand by supply
Common Base \& Separate Door Concept

QVE Pearl Ivory

Advantages
- Flexibility to Choose from wide range of Color options - Feasibility of replacing the old DB door with new door* - Low Investment - No Threat of Theft of Door or Components of DB

Common Distribution Board Base - SPN

Range

SPN - 4, 6, 8, 12 \& 16 Ways
Color
Regal Grey

Specification

IEC 61439-3, IS:13032 \& IS:8623

Features

- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable din bar with end stoppers for easy assembly of breakers
- Supplied with fully shielded bus-bars
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	D	E
4	62	175	125	172	165
6	98	211	151	166	153
8	134	247	187	166	153
12	206	319	269	176	153
16	278	391	341	172	153

Common Distribution Board Base Suitable for DCORA / Metalica / QVE Door

No. of Ways	SPN-Base Cat. No.
4	DSSDBX0240
6	DSSDBX0241
8	DSSDBX0242
12	DSSDBX0243
16	DSSDBX0244

Common Distribution Board Base - TPN

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Regal Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable din bar assly with end stoppers for easy assembly of breakers
- Supplied with fully shielded bus-bars
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C
4	134	251	196
6	206	323	268
8	278	395	340
12	417	534	479

Common Distribution Board Base Suitable for DCORA / Metalica / QVE Door

No. of Ways	SPN-Base Cat. No.
4	DSSDBX0250
6	DSSDBX0251
8	DSSDBX0252
12	DSSDBX0253

SPN DCORA DB DOOR - Range

Klass Leather

Sepia Rosewood

Pearl Stone

Range

SPN - 4, 6, 8, 12 \& 16 Ways
Color
Klass Leather, Sepia Rosewood \& Pearl Stone

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Magnetic door lock with easy-to-open door handle
- Versatile design

Dimensions (in mm)

No. of Ways	A	B	C
4	62	209	165
6	98	245	153
8	134	281	153
12	206	353	153
16	278	425	153

SPN DCORA Distribution Board Door

No. of Ways	O/G	Klass Leather Cat. No.	Sepia Rosewood Cat. No.	Pearl Stone Cat. No.
4	4	DSSDBX0159	DSSDBX0164	DSSDBX0169
6	6	DSSDBX0160	DSSDBX0165	DSSDBX0170
8	8	DSSDBX0161	DSSDBX0166	DSSDBX0171
12	12	DSSDBX0162	DSSDBX0167	DSSDBX0172
16	16	DSSDBX0163	DSSDBX0168	DSSDBX0173

TPN DCORA DB DOOR - Range

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Klass Leather, Sepia Rosewood \& Pearl Stone

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Magnetic door lock with easy-to-open door handle
- Versatile design

Dimensions (in mm)

No. of Ways	A	B
4	134	285
6	206	357
8	278	429
12	417	568

TPN DCORA Distribution Board Door (for Single Phase Outgoing) suitable for MCB / RCCB / Isolator as incomer

No. of Ways	I/C+O/G	Klass Leather Cat. No.	Sepia Rosewood Cat. No.	Pearl Stone Cat. No.
4	$4+12$	DSSDBX0204	DSSDBX0208	DSSDBX0212
6	$8+18$	DSSDBX0205	DSSDBX0209	DSSDBX0213
8	$8+24$	DSSDBX0206	DSSDBX0210	DSSDBX0214
12	$8+36$	DSSDBX0207	DSSDBX0211	DSSDBX0215

SPN Metalica DB DOOR

Range

SPN - 4, 6, 8, 12 \& 16 Ways
Color
Sparkling White, Sparkling Gold \& Silverish Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Magnetic door lock with easy-to-open door handle
- Versatile design
- Scratch resistant glossy surface

Dimensions (in mm)

No. of Ways	A	B	C
4	62	209	165
6	98	245	153
8	134	281	153
12	206	353	153
16	278	425	153

SPN Metalica Distribution Board Door

No. of Ways	O/G	Sparkling White Cat. No.	Sparkling Gold Cat. No.	Silverish Grey Cat. No.
4	4	DSSDBX0179	DSSDBX0189	DSSDBX0184
6	6	DSSDBX0180	DSSDBX0190	DSSDBX0185
8	8	DSSDBX0181	DSSDBX0191	DSSDBX0186
12	12	DSSDBX0182	DSSDBX0192	DSSDBX0187
16	16	DSSDBX0183	DSSDBX0193	DSSDBX0188

TPN Metalica DB DOOR

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Sparkling White, Sparkling Gold \& Silverish Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623
Features

- Magnetic door lock with easy-to-open door handle
- Versatile design
- Scratch resistant glossy surface

Dimensions (in mm)

No. of Ways	A	B
4	134	285
6	206	357
8	278	429
12	417	568

TPN Metalica Distribution Board Door (for Single Phase Outgoing) suitable for MCB / RCCB / Isolator as incomer

No. of Ways	I/C+O/G	Sparkling White Cat. No.	Sparkling Gold Cat. No.	Silverish Grey Cat. No.
4	$4+12$	DSSDBX0220	DSSDBX0228	DSSDBX0224
6	$8+18$	DSSDBX0221	DSSDBX0229	DSSDBX0225
8	$8+24$	DSSDBX0222	DSSDBX0230	DSSDBX0226
12	$8+36$	DSSDBX0223	DSSDBX0231	DSSDBX0227

SPN QVE DB DOOR

Range
SPN - 4, 6, 8, 12 \& 16 Ways
Color
Regal Grey \& Pearl Ivory
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Compact DBs which occupy minimum space

Dimensions (in mm)

No. of Ways	A	B	C
4	62	197	165
6	98	233	153
8	134	269	153
12	206	341	153
16	278	413	153

SPN QVE Distribution Board Door

No. of Ways	O/G	Regal Grey Cat. No.	Pearl Ivory Cat. No.
4	4	DSSDBX0194	DSSDBX0199
6	6	DSSDBX0195	DSSDBX0200
8	8	DSSDBX0196	DSSDBX0201
12	12	DSSDBX0197	DSSDBX0202
16	16	DSSDBX0198	DSSDBX0203

TPN QVE DB DOOR

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Regal Grey \& Pearl Ivory
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Compact DBs which occupy minimum space

Dimensions (in mm)

No. of Ways	A	B
4	134	269
6	206	341
8	278	413
12	417	557

TPN QVE Distribution Board Door (for Single Phase Outgoing) suitable for MCB / RCCB / Isolator as incomer

No. of Ways	I/C+O/G	Regal Grey Cat. No.	Pearl White Cat. No.
4	$4+12$	DSSDBX0232	DSSDBX0236
6	$8+18$	DSSDBX0233	DSSDBX0237
8	$8+24$	DSSDBX0234	DSSDBX0238
12	$8+36$	DSSDBX0235	DSSDBX0239

EURO-II

Distribution Boards

METALICA
DISTRIBUTION
BOARDS

Metalica series of Distribution Boards is yet another testimony to the advanced Havells research which focuses on user-centered design especially in its aesthetics \& engineering qualities, and pivots on the concepts of variety, performance and simplicity of use. The series has been designed to meet the aesthetic requirements of the modern interiors which demand that a distribution board should blend perfectly with other decorative elements of the room, be it the living room of a house or a corporate office or a showroom.

The unique design and 'ease of use' of Metalica Distribution Boards truly set them apart. The premium metallic finish, specially designed curved surface on the front cover and 'Pull To Open' type magnetic door handle reflect that even the smallest of detail has been perfected to ensure superior user experience. The provision for split neutral to provide for two different types of power supply is again a testimony to our extensive research and customer understanding.

Havells Metalica Distribution Boards have been designed using the latest available technology and comply with the following standards: IEC 61439-3.

Magnetic door lock with easy to open door handle

Scratch resistant glossy surface

Provided with transparent Cement Guard to protect your DB from construction spill over

Remove link to use split neutral provision

- Use 1st neutral link for mains supply
- Use 2nd neutral link for stand by supply

SPN Metalica DB

Range
SPN - 4, 6, 8, 12 \& 16 Ways

Color

Silverish Grey, Sparkling White \& Sparkling Gold

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Magnetic door lock with easy to open door handle
- Scratch resistant glossy surface
- Remove link to use split neutral provision
- Use 1st neutral link for mains supply
- Use 2nd neutral link for stand by supply
- Provided with transparent Cement Guard to protect your DB from construction spill over
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	D	Top		Bottom			Side
4	209	175	125	172	3	-	3	-	1	1
6	245	211	151	166	3	-	3	-	1	1
8	281	247	187	166	2	2	2	2	1	1
12	353	319	269	176	4	2	4	2	1	1
16	425	391	341	172	4	2	4	2	1	1

Knockout Holes (Ø25 \& Ø31)

SPN Metalica DB

No. of Ways	O/G	Sparkling White Cat. No.	Sparkling Gold Cat. No.	Silverish Grey Cat. No.
4	4	DHDNSHODAW04	DHDNSHODGW04	DHDNSHODDW04
6	6	DHDNSHODAW06	DHDNSHODGW06	DHDNSHODDW06
8	8	DHDNSHODAW08	DHDNSHODGW08	DHDNSHODDW08
12	12	DHDNSHODAW12	DHDNSHODGW12	DHDNSHODDW12
16	16	DHDNSHODAW16	DHDNSHODGW16	DHDNSHODDW16

TPN Metalica DB

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Silverish Grey, Sparkling White \& Sparkling Gold
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Magnetic door lock with easy to open door handle
- Scratch resistant glossy surface
- Remove link to use split neutral provision
- Use 1st neutral link for mains supply
- Use 2nd neutral link for stand by supply
- Provided with transparent Cement Guard to protect your DB from construction spill over
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
				$\varnothing 31$			
4	285	251	196	4	4	2	1
6	357	323	268	6	6	2	1
8	429	395	340	6	6	2	1
12	568	534	479	8	8	2	1

Knockout Holes (Ø31)

TPN Metalica DB

No. of Ways	I/C+O/G	Sparkling White Cat. No.	Sparkling Gold Cat. No.	Silverish Grey Cat. No.
4	$4+12$	DHDNTHODAW04	DHDNTHODGW04	DHDNTHODDW04
6	$8+18$	DHDNTHODAW06	DHDNTHODGW06	DHDNTHODDW06
8	$8+24$	DHDNTHODAW08	DHDNTHODGW08	DHDNTHODDW08
12	$8+36$	DHDNTHODAW12	DHDNTHODGW12	DHDNTHODDW12

EURO-II

Distribution Boards

QVE PLUS DISTRIBUTION BOARDS

AFTER ALL, A PROTECTOR NEEDS TO BE TOUGH.

Introducing QVE Plus Distribution Boards

Features

- Robust core with smooth curve semantic
- Innovative textured finish with optimized
play of matte and gloss
Multiple premium colour finishes

Common Distribution Board Base - SPN

Range

SPN - 4, 6, 8, 12 \& 16 Ways
Color
Regal Grey

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable din bar with end stoppers for easy assembly of breakers
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	D		Top		Bottom	
4	182	175	123	128	-	2	-	2	1
6	218	211	159	164	3	-	3	-	1
8	254	247	195	200	2	2	2	2	1
12	326	319	267	272	4	2	4	2	1
16	398	391	339	344	4	2	4	2	1

Distribution Board Base Suitable for QVE Plus Door

No. of Ways	DB Base for SPN Door Cat. No.
4	DSSDBX0245
6	DSSDBX0246
8	DSSDBX0247
12	DSSDBX0248
16	DSSDBX0249

Common Distribution Board Base - TPN

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Regal Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable din bar assly with end stoppers for easy assembly of breakers
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	D	Top	Bottom	Side
			$\boxed{3} 1$	$\emptyset 31$			
4	258	251	196	204	4	4	2
6	330	323	268	276	6	6	2
8	402	395	340	348	8	8	2
12	546	539	484	492	8	8	2

Distribution Board Base Suitable for QVE Plus Door

No. of Ways	DB Base for TPN Door Cat. No.
4	DSSDBX0254
6	DSSDBX0255
8	DSSDBX0256
12	DSSDBX0257

SPN QVE PLUS DOOR - Range

Super White

Range

SPN - 4, 6, 8, 12 \& 16 Ways
Color
Super White, Perdo Ivory \& Mineral Grey

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Robust core with smooth curve semantic
- Innovative textured finish with optimized play of matte and gloss
- Multiple premium colour finishes

Dimensions (in mm)

No. of Ways	A	B
4	128	186
6	164	222
8	200	258
12	272	330
16	344	402

SPN QVE Plus Distribution Board Door

No. of Ways	O/G	Mineral Grey SPN Door Cat. No.	Perdo Ivory SPN Door Cat. No.	Super White SPN Door Cat. No.
4	4	DSSDBX0268	DSSDBX0277	DSSDBX0299
6	6	DSSDBX0269	DSSDBX0278	DSSDBX0300
8	8	DSSDBX0270	DSSDBX0279	DSSDBX0301
12	12	DSSDBX0271	DSSDBX0280	DSSDBX0302
16	16	DSSDBX0272	DSSDBX0281	DSSDBX0303

TPN QVE PLUS DOOR - Range

Super White

Perdo Ivory

Mineral Grey

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Super White, Perdo Ivory \& Mineral Grey

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Robust core with smooth curve semantic
- Innovative textured finish with optimized play of matte and gloss
- Multiple premium colour finishes

Dimensions (in mm)

No. of Ways	A	B
4	204	262
6	276	334
8	348	406
12	492	550

TPN QVE Plus Distribution Board Door (for Single Phase Outgoing) suitable for MCB / RCCB / Isolator as incomer

No. of Ways	I/C+O/G	Mineral Grey TPN Door Cat. No.	Perdo Ivory TPN Door Cat. No.	Super White TPN Door Cat. No.
4	$4+12$	DSSDBX0273	DSSDBX0282	DSSDBX0304
6	$8+18$	DSSDBX0274	DSSDBX0283	DSSDBX0305
8	$8+24$	DSSDBX0275	DSSDBX0284	DSSDBX0306
12	$8+36$	DSSDBX0276	DSSDBX0285	DSSDBX0307

EURO-II

Distribution Boards

(3)

$\underset{\text { navras }}{\text { 位 }}$

DISTRIBUTION BOARDS
WITH LOCK

Havells research focuses on user-centered design especially engineering qualities, and pivots on the concepts of variety, performance and simplicity of use. The DB series with key lock feature has been designed to meet the demand of a secure distribution board placed at a location accessible to strangers. The user can access full control
Of DB operation to secure it from any misuse or theft of components .
The DB styled to meet the modern day aesthetics is yet another state of art product from the leader in customer driven innovation .

Range

- Distribution Board With Metal Key Lock (SPN)
- Distribution Board With Metal Key Lock (TPN)

SPN Metal Key Lock DB

Range
SPN - 8 \& 12 Ways
Color
Regal Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Metal key lock
- Remove link to use split neutral provision
- Use 1st neutral link for mains supply
- Use 2nd neutral link for stand by supply
- Provided with transparent Cement Guard to protect your DB from construction spill over
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	D	Knockout Holes				
					Top		Bottom		Side
					$\varnothing 25$	Ø31	Ø25	Ø31	
8	270	247	197	166	2	2	2	2	1
12	342	319	269	176	4	2	4	2	1

No. of Ways	SAP Code	Description
8	DHDMSHODCW08	SPN 8W DD DB WITH LOCK
12	DHDMSHODCW12	SPN 12W DD DB WITH LOCK

TPN Metal Key Lock DB

Range

TPN - 4, 6 \& 8 Ways
Color
Regal Grey

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Metal key lock
- Remove link to use split neutral provision
- Use 1st neutral link for mains supply
- Use 2nd neutral link for stand by supply
- Provided with transparent Cement Guard to protect your DB from construction spill over
- IP 42

Dimensions (in mm)

No. of Ways	SAP Code	Description
4	DHDMTHODCW04	TPN 4W DD DB WITH LOCK
6	DHDMTHODCW06	TPN 6W DD DB WITH LOCK
8	DHDMTHODCW08	TPN 8W DD DB WITH LOCK

EURO-II

Distribution Boards

PHASE SELECTOR
DISTRIBUTION
BOARDS

The power instability in developing countries creates the need for phase selection to back up the utility supply. In such systems, in case of phase outage, the load can be shifted to healthy phase, to maintain continuity of supply. Havells offers. Phase Selector Distribution Board and retrofittable Phase Selector Units to serve this purpose They are available in two versions - manual and automatic.

Range:

- Manual Phase Selector DB (Horizontal - 4 Quadrant)
- Manual Phase Selector DB (Vertical)
- Automatic Phase Selector DB
- Phase Selector Enclosure (Vertical)
- Automatic Phase Selector Unit

Specification
IEC 61439-3, IS 13032 \& IS 8623

Automatic changeover to healthy phase in case of phase outage/ over-voltage/ under-voltage. Operational status indication through LEDs

Manual phase selector DB which allows shifting to healthy phase using phase selector switches

Easy Retro-fit Solutions - Provision to change your existing TPN DB to automatic/manual phase selector DB in a simple, economical and easy to use manner.

Automatic Phase Selector DB

The power instability in developing countries creates the need for phase selection to back up the utility supply. Today there is a growing need of automation in distribution system as the rate of power outage and low voltage output becomes predominantly high.

Automatic Phase Selector DBs offers several advantages over manual phase selector DBs. Most of the residential and commercial applications are dependent on power supply and if the process of changeover is manual, a considerable time is wasted, and it may also cause hindrance in important activities. Moreover manual changing is not possible every time as identifying the phase of power interruption is difficult.

In addition to above, this DB introduces an automatic solution to overcome problems of not just phase outage but also power fluctuations (over-voltage/ under-voltage) by selecting the next most healthy phase available.

It maintains a constant output power supply irrespective of the available input supply by continuously monitoring each phase, automatically switching between them and returning to the priority phase as necessary.

Working of Automatic Phase Selector DB:
Phase Priority Selection:
The phase priority selection is manually carried out by the user through a priority selector switch present on the front facia of Automatic Phase selector. The user can select the desired priority sequence according to its own choice i.e. RYB, YBR or BRY.

Phase loss Protection:

- In case of phase failure (if RYB priority sequence is selected), the Automatic switching equipment will first check the R phase. If the R phase is present and its phase voltage is in the required range, then the load will run on the R phase only, which will be indicated by the R phase LED blinking at the rate of 1 second.
- But if the R phase goes off i.e. fails (the LED will stop glowing), then the Automatic switching equipment will check the voltage in the Y phase. If the Automatic switching equipment finds Y phase as the healthiest phase, then it will do the necessary switching to the Y phase within 3 seconds (and Y phase LED will start blinking at the rate of 1 second).
- If it does not find Y phase healthy, it will repeat the above procedure with the B phase.

Restoration of highest priority phase:

- In the event of restoration of highest priority phase (say R phase), the entire load will be automatically transferred to that phase within 3 seconds.

Under-voltage protection:

- If the voltage level of the supplying phase falls below the undervoltage limit of 150 V (factory sealed), then the Automatic switching equipment shifts the entire load to the next healthiest phase according to its priority. The under voltage condition on a particular phase is indicated by the LED of the respective phase blinking at the rate of 3 seconds.
- The fault LED will also glow indicating the system under fault.

Over-voltage Protection:

- The overvoltage limit is factory sealed or fixed at 300 V . So if the voltage of the supplying phase goes above 300 V , then the Automatic switching equipment will shift the entire load to the next available healthiest phase according to the priority set by the user. The over voltage condition on a particular phase is indicated by the LED of the respective phase blinking at the rate of 0.5 second.
- The fault LED will also glow indicating the system under fault.

Range

Automatic Phase Selector

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Phase loss Protection
- Under voltage \& overvoltage protection
- Manual phase priority selection
- Operational status indication through LEDs
- Incomer with prewired TPN MCB 63 A
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top		Bottom		Side	Sheet Ø31 Thickness
4	261			5	4	5	4	3	1.2
6	261	251	211	5	4	5	4	3	1.2

Knockout Holes (Ø20, Ø25 \& Ø31)

Automatic Phase Selector DB

Incomer Rating	Rating APS	Ways	I/C + O/G	Cat. No.	Description
63 A TPN MCB	32 A	4	$8+12$	DHDANVDRZ04032	Auto Ph-Sel DB 4 W D/D 32 A
63 A TPN MCB	32 A	6	$8+18$	DHDANVDRZ06032	Auto Ph-Sel DB 6 W D/D 32 A

Automatic Phase Selector Unit

These are retrofittable add-ons to existing TPN DBs to convert them into automatic phase selector DBs in a simple, easy to use and reliable manner.

Range

Automatic Phase Selector Unit
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Can be easily connected with your exsisting DB
- Automatic Phase selection
- Phase loss Protection
- Under voltage \& overvoltage protection
- Manual phase priority selection
- Operational status indication through LEDs
- It comes with prewired TPN MCB of 63 A
- IP 40

Technical Specification

Incomer MCB	TPN 63 A
Standard Conformity	IEC 60947-6-1
No. of poles	3 P+N
Rated voltage (Ue)	415 Vac
Operating voltage range	200 Vac to 415 Vac
Rated frequency	50 Hz
Time delay for phase changeover	3 s
Utilization category	AC31A
Indication	Individual phase (R, Y, B), load, fault, type of fault (i.e. Undervoltage or overvoltage)
Ambient temp	$-5^{\circ} \mathrm{C}$ to +55º
Electrical life	6000 operations
Rated impulse withstand voltage (Uimp)	2.5 kV
Conditional short circuit breaking capacity	3 kA
Mounting	DIN rail mounting
Terminal capacity	$10 \mathrm{~mm}{ }^{2}$
Phase Priority selection	Manual (RYB, YBR, BRY)
Undervoltage Protection (L-N)	150 V (factory sealed)
Overvoltage Protection (L-N)	300 V (factory sealed)

Note: The switching capacity of the individual unit (APS) is 32 A. But the total load carrying capacity of APS on any single phase is 63 A (as incomer MCB is of 63 A).

Automatic Phase Selector Unit

Rating	Cat. No.
32 A	DHDAMHSCZO0032

Manual Phase Selector DB

Havells offers TPN DBs with inbuilt phase selector switches to easily and manually shift the load to healthy phase in case of phase outage. These are recommended for residential and commercial applications for phase selection to back-up power in situations of utility phase outage.

Phase Selector DB (Horizontal - 4 Quadrant)

Range

Phase Selector (Horizontal - 4 Quadrant) - 4, 6 \& 8 Ways

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- With inbuilt 3 nos. of $40 \mathrm{~A} / 63$ A phase selector switches and 3 nos. piano switches
- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar for each phase
- With neutral bar, earth bar and cable ties for cable management
- Fully insulated busbar and neutral bar
- Provision for 8 W incomer, indicator light R, Y, B (FP MCB/ Isolator/RCCB)
- Supplied with wire set
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	D	E	Top		Bottom		Side Each Side	
4	478	373	496	430	355	8	9	8	9	3	1
6	514	409	532	430	355	9	10	9	10	3	1
8	550	445	568	430	355	10	11	10	11	3	1

Knockout Holes (Ø20 \& Ø25)

Phase Selector (Horizontal-4 Quadrant)
(with rotary switches, duly wired)

No. of Ways	Rating	Regal Grey Cat. No. (DD)	I/C
4	40 A	DHDSCHDRZ04040	Eight way
4	63 A	DHDSCHDRZ04063	Eight way
6	40 A	DHDSCHDRZ06040	Eight way
6	63 A	DHDSCHDRZ06063	Eight way
8	40 A	DHDSCHDRZ08040	Eight way
8	63 A	DHDSCHDRZ08063	Eight way

Phase Selector DB (Vertical)

Range

Phase Selector (Vertical) - 4, 6 \& 8 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623
Features

- With inbuilt 3 nos. of 63 A phase selector switches and 3 nos. piano switches
- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar for each phase
- With neutral bar, earth bar and cable ties for cable management
- Fully insulated busbar and neutral bar
- Provision for 8 Ways incomer, indicator light R, Y, B (FP MCB/ Isolator/RCCB)
- Supplied with wire set
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top		Bottom		Side	Sheet Thickness
				$\emptyset 25$	Ø 20	Ø 25	$\varnothing 20$		
4	333	323	248	9	8	9	8	3	1.2
4	333	323	248	9	8	9	8	3	1.2
6	405	395	320	9	8	9	8	3	1.2
6	405	395	320	9	8	9	8	3	1.2
8	405	395	320	9	8	9	8	3	1.2
8	405	395	320	9	8	9	8	3	1.2

Knockout Holes (Ø20 \& Ø25)

Phase Selector (Vertical)
(with rotary switches, duly wired \& provision for 8 Ways I/C)

No. of Ways	Rating	Regal Grey Cat. No. (DD)	Pearl Ivory Cat. No. (DD)
4	40 A	DHDSNVDRZ04040	DHDSNVDPZ04040
4	63 A	DHDSNVDRZ04063	DHDSNVDPZ04063
6	40 A	DHDSNVDRZ06040	DHDSNVDPZ06040
6	63 A	DHDSNVDRZ06063	DHDSNVDPZ06063
8	40 A	DHDSNVDRZ08040	DHDSNVDPZ08040
8	63 A	DHDSNVDRZ08063	DHDSNVDPZ08063

Phase Selector Enclosure (Vertical)

These are retrofittable add-ons to existing TPN DBs to convert them into manual phase selector DBs in a simple, easy to use and reliable manner.

Range

40 A to 63 A
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Compact DBs which occupy minimum space
- TPN DB can be used as a Phase Selector DB after attaching the Phase Selector Enclosure.
- Suitable for surface \& flush mounting
- Cost Effective Solution
- Supplied with rotary switches, duly wired
- Suitable for use on $240 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply
- IP 40

Dimensions (in mm)

Rating	A	B	C	Top	Bottom	Sheet Thickness
40 A	65	83	123	3	3	1.2
63 A	91	109	144	3	3	1.2

Knockout Holes (Ø25)

Phase Selector Enclosure (Vertical)
(with rotary switches, duly wired)

Rating	Regal Grey Cat. No. (DD)
40 A	DHDATVFS40
63 A	DHDATVFS63

EURO-II

Distribution Boards

Havells offers a wide range of compact, elegant \& economical distribution boards with unique features, designed \& engineered to provide user safety, convenience and operational / maintenance advantages.

With these inherent strengths, Havells Utility DB Range has been increasingly adopted by leading power consumers in residential, commercial and industrial installations, as a strong, simple and reliable power distribution method.

Range:

- QVE Series SPN/TPN Distribution Boards
- Consumer Units
- MCB Enclosure SPN
- MCB Enclosure (Plastic \& Sheet Steel)

Specification
IEC 61439-3, IS 13032 \& IS 8623

QVE Series SPN DB

Range

SPN - 4, 6, 8, 12 \& 16 Ways
Color
Pearl Ivory \& Regal Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Compact DBs which occupy minimum space
- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable din bar with end stoppers for easy assembly of breakers
- Supplied with fully shielded bus-bars
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top $\varnothing 25$	$\varnothing 31$	Bottom	Side	Sheet Thickness
4	175	125	197	3	-	3	1	1
6	211	151	233	3	-	3	1	1
8	247	187	269	2	2	5	1	1
12	319	269	341	4	2	7	1	1
16	391	341	413	4	2	9	1	1

Knockout Holes (Ø25 \& Ø31)

SPN Distribution Boards

No. of Ways	I/C+O/G	Regal Grey Cat. No. (SD)	Regal Grey Cat. No. (DD)	Pearl Ivory Cat. No. (DD)
4	4	DHDPSHOSRW04	DHDPSHODRW04	DHDPSHODPW04
6	6	DHDPSHOSRW06	DHDQSHODRW06	DHDQSHODPWO6
8	8	DHDPSHOSRW08	DHDPSHODRW08	DHDPSHODPW08
12	12	DHDPSHOSRW12	DHDPSHODRW12	DHDPSHODPW12
16	16	DHDPSHOSRW16	DHDPSHODRW16	DHDPSHODPW16

QVE Series TPN DB

Suitable for MCB / RCCB / Isolator as Incomer

Range

TPN - 4, 6, 8 \& 12 Ways
Color
Pearl Ivory \& Regal Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Compact DBs which occupy minimum space
- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable Din Bar with end stoppers for easy assembly of breakers
- Supplied with fully shielded bus-bars
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	251	196	269	4	4	2	1
$* 4$	323	268	341	6	6	2	1
6	323	268	341	6	6	2	1
8	395	340	413	6	6	2	1
12	534	479	552	8	8	2	1

Knockout Holes (Ø31)
*8 Ways Incomer provision

TPN Distribution Boards (for Single Phase Outgoing) Suitable for MCB / RCCB / Isolator as Incomer

No. of Ways	I/C+O/G	Regal Grey Cat. No. (SD)	Regal Grey Cat. No. (DD)	Pearl Ivory Cat. No. (DD)
4	$4+12$	DHDQTHCSRW04	DHDNTHCDRW04	DHDNTHCDPW04
6	$8+18$	DHDQTHCSRW06	DHDNTHCDRW06	DHDNTHCDPW06
8	$8+24$	DHDQTHCSRW08	DHDNTHCDRW08	DHDNTHCDPW08
12	$8+36$	DHDQTHCSRW12	DHDNTHCDRW12	DHDNTHCDPW12

QVE Series TPN DB

Range
TPN - 4, 6, 8 \&12 Ways
Color
Pearl Ivory \& Regal Grey

Specification

IEC 61439-3, IS 13032 \& IS 8623
Features

- Compact DBs which occupy minimum space
- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- Detachable Din Bar with end stoppers for easy assembly of breakers
- Supplied with fully shielded bus-bars
- Level marks for providing indication for fitment in wall
- Supplied with neutral \& earth link, top \& bottom detachable plates
- Supplied with masking sheet to protect components from cement during plastering
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	251	196	269	4	4	2	1
$* 4$	323	268	341	6	6	2	1
6	323	268	341	6	6	2	1
8	395	340	413	6	6	2	1
12	534	479	552	8	8	2	1

Knockout Holes (Ø31)
*8 Ways Incomer provision

TPN Distribution Boards (for Single Phase Outgoing)

No. of Ways	I/C+O/G	Regal Grey Cat. No. (SD)	Regal Grey Cat. No. (DD)	Pearl Ivory Cat. No. (DD)
4	$4+12$	DHDPTHOSRW04	DHDPTHODRW04	DHDPTHODPW04
6	$8+18$	DHDPTHOSRW06	DHDPTHODRW06	DHDPTHODPW06
8	$8+24$	DHDPTHOSRW08	DHDPTHODRW08	DHDPTHODPW08
12	$8+36$	DHDPTHOSRW12	DHDPTHODRW12	DHDPTHODPW12

Consumer Units

Range

SPN - 4, 8, 12 \& 16 Ways

Color

Regal Grey
Specification
IEC 61439-3, IS 13032 \& IS 8623
Features

- Compact DBs which occupy minimum space
- Raised neutral link for easy wiring
- Suitable for surface \& flush mounting
- DIN-bar
- Supplied with fully shielded bus-bars
- Supplied with neutral \& earth link, top \& bottom detachable plates
- IP 40

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	139	89	154	3	3	1	1
8	211	161	226	5	5	1	1
12	283	233	298	7	7	1	1
16	355	305	370	9	9	1	1

Knockout Holes (Ø25)

Single Door with Acrylic Window

Sheet Steel, Phosphatized, Powder Painted MCB DBs with Bus Bar, Neutral Link, Earth Bar and Din Rail (In accordance with IS 13032, IS 8623, IEC/BS EN 60439-3)

No. of Ways	Regal Grey Cat. No.
4	DHDMSHOSRA04
8	DHDMSHOSRA08
12	DHDMSHOSRA12
16	DHDMSHOSRA16

MCB Single Door Consumer

Single Door Consumer unit without Isolator

No. of Ways	Regal Grey Cat. No.
$2+4$	DHDCSHOSRW04
$2+8$	DHDCSHOSRW08
$2+12$	DHDCSHOSRW12

MCB Enclosure (Plastic \& Sheet Steel)

Dimensions (in mm)

No. of Ways	A	B	C
2	140	45	65
4	140	81	65

Dimensions (in mm)

No. of Ways	A	B	C	D	E	Top	Bottom	Sheet Thickness
2	60	160	70	170	30	1	1	1
4	98	180	108	190	62	2	2	1

Knockout Holes (Ø25)

MCB PlasticEnclosure (Cutout)

No. of Poles	Cat. No.
2	DHDEPDP
4	DHDEPFP

MCB Sheet Steel Enclosure (Cutout)
Sheet Steel, Phosphatized, Powder Painted MCB DBs with Bus Bar, Neutral Link, Earth Bar and Din Rail

No. of Poles	Cat. No.
2	DHDESDP
4	DHDESFP

EURO-II

Distribution Boards

DESIGNER
DISTRIBUTION
BOARDS

Havells offers Designer Distribution Boards - blending aesthetics and functionality in a perfect combination which is compact, elegant, economical and easy to use. The range has been designed with unique features ensuring user safety, convenience, easy handling, and quick, simple installation.

Range:

- DBOXx SPN/TPN Distribution Boards
- Translusent Distribution Boards
- Transparent Distribution Boards

Specification
IEC 61439-3, IS 13032 \& IS 8623

DBOXx Range

Knockout Holes (Ø25 \& Ø31)

DBOXx SPN
The New Style statement for your DBs

No. of Ways	I/C+O/G	Mist White SPN Cat. No.	Coin Grey SPN Cat. No.
8	8	DHDNSHCDOW08	DHDNSHCDDW08
12	12	DHDNSHCDOW12	DHDNSHCDDW12
16	16	DHDNSHCDOW16	DHDNSHCDDW16

Range

DBOXx - (SPN) 8,12 \& 16 Ways
DBOXx - (TPN) 4, 6, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623
Features

- These are most elegantly designed DBs, to suit the decor of homes
- Raised neutral link for easy wiring
- Spring loaded outer cover swings open by just pressing the lock as in case of DBOXx
- Supplied with masking sheets to protect components from cement during plastering
- Supplied with neutral \& earth link, top \& bottom detachable plates
- IP 42

Dimensions TPN (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
$4 / 6$	359	304	395	6	6	2	1
8	395	340	431	6	6	2	1
12	539	484	575	8	8	2	1

Knockout Holes (Ø31)

DBOXx TPN
The New Style statement for your DBs

No. of Ways	I/C+O/G	Mist White TPN Cat. No.	Coin Grey TPN Cat. No.
$4 / 6$	$8+18$	DHDNTHCDOW06	DHDNTHCDDW06
8	$8+24$	DHDNTHCDOW08	DHDNTHCDDW08
12	$8+36$	DHDNTHCDOW12	DHDNTHCDDW12

EURO-II

Distribution Boards

SPECIAL
APPLICATION
DISTRIBUTION
BOARDS

Havells offers a wide range of special application distribution boards, engineered with deep thought and precision to meet the specific needs of different applications. These DBs seamlessly blend aesthetics, functionality and safety, guaranteeing easy installation, operational and maintenance advantages to discerning clientele.

Range:

- 7 Segment Distribution Boards
- SPN/TPN Prewired Distribution Boards
- TPN Vertical Distribution Boards
- TPN Vertical Loadline
- TPN Prewired (with Cable End Box)
- Per Phase Isolation (PPI) Vertical - 4 Tier

Distribution Boards

- Per Phase Isolation (PPI) - QVE Series

Specification
IEC 61439-3, IS 13032 \& IS 8623

- SPN/TPN (IP 54)

7 Segment

Range
7 Segment DB - 4, 6, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- DBs with separate compartments to fully segregate \& isolate incomer and outgoing devises in each phase, which also facilitates easy and quick maintenance
- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar for each phase
- With seperate neutral bar, earth bar
- Fully insulated busbar
- Main Incomer FP Isolator \& FP Changeover, DP RCCB as subincomer and SP MCBs as outgoing
- Supplied with wire set
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Sheet Thickness
4	440	380	474	7	7	1.2
6	548	488	582	8	8	1.2
8	656	596	690	10	10	1.6
12	872	812	906	13	13	1.6

Knockout Holes (Ø31)

7 Segment

No. of Ways	Regal Grey Cat. No. (DD).
4	DHDMTHDDRW04
6	DHDMTHDDRW06
8	DHDMTHDDRW08
12	DHDMTHDDRW12

TPN Vertical

Range
TPN Vertical DB-4, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Suitable for Flush mounting and Surface mounting
- With 125 A copper busbar flat type
- With neutral \& earth bars
- Pan assembly for ease of installation
- With provision for FP Isolator/RCCB as incomer and SP / TP MCBs as outgoing
- IP 40 (for Single Door)
- IP 42 (for Double Door)

TPN Vertical

No. of Ways	I/C+O/G	Single Door	Double Door
4	$8+12$	DHDMTVOSRW04	DHDPTVODRW04
8	$8+24$	DHDMTVOSRW08	DHDPTVODRW08
12	$8+36$	DHDMTVOSRW12	DHDPTVODRW12

TPN Vertical Loadline

Range

Loadline DB - (TPN SD/DD) - 4, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Suitable for Flush mounting and Surface mounting
- With 160 A \& 250 A copper busbar
- With neutral bars \& earth bars
- With provision for TP/FP 160 MCCB as incomer and SP / TP MCBs as outgoing
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom $\varnothing 31$	Bottom $\varnothing 38$	Side	Sheet Thickness
4	685	595	670	7	4	1	2	1.2
8	793	703	778	7	4	1	2	1.2
12	901	811	886	7	4	1	2	1.2

Knockout Holes (Ø31 \& Ø38)

TPN Vertical Loadline
Loadline DBs are fitted with Bus Bars, Neutral Links, Blanking Plates (without MCCB) (Suitable for TP/FP)

No. of Ways	Cat. No.	Description
SINGLE DOOR		
4	DHDLVSRWGOFO04	SUITABLE FOR TP/FP 'G FRAME' MCCB
8	DHDLVSRWGOFO08	DB LL 4 W SD VERT W/O MCCB
12	DHDLVSRWGOFO12	DB LL 8 W SD VERT W/O MCCB
	DOUBLE DOOR	DB LL 12 W SD VERT W/O MCCB
4	DHDLVDRWGOFO04	SUITABLE FOR TP/FP 'G FRAME' MCCB
8	DHDLVDRWGOFO08	DB LL 4 W DD VERT W/O MCCB
12	DHDLVDRWGOFO12	DB LL 8 W DD VERT W/O MCCB
4	DOUBLE DOOR	DB LL 12 W DD VERT W/O MCCB
8	DHDLVDRWAOFO04	SUITABLE FOR TP/FP 'A FRAME' MCCB
12	DHDLVDRWAOFO08	DB LL 4 W DD VERT W/O MCCB

[^2]

Range

IP - 54 (SPN DD) - 4, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623
Features

- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar
- With neutral bars \& earth bar
- Fully insulated busbar
- IP 54

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	175	125	175	3	3	1	1.6
8	247	197	247	5	5	1	1.6
12	319	269	319	7	7	1	1.6

Knockout Holes (Ø31)

No. of Ways	Description	Horizontal Cat. No.
4	SPN DB DD 04W	DHDMSHODRW040002
8	SPN DB DD 08W	DHDMSHODRW080002
12	SPN DB DD 12W	DHDMSHODRW120002

TPN (IP 54)

Range
IP 54 (TPN DD) - 4, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar
- With neutral bars \& earth bar
- Fully insulated busbar
- IP 54

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	251	196	251	5	5	2	1.6
8	395	340	395	8	8	2	1.6
12	534	479	534	11	11	2	1.6

Knockout Holes (Ø31)

TPN (IP 54)

No. of Ways	Description	Horizontal Cat. No.	Vertical Cat. No.
4	TPN DB DD 04 Ways	DHDMTHODRW040002	DHDMTVODR040002
8	TPN DB DD 08 Ways	DHDMTHODRW080002	DHDMTVODR080002
12	TPN DB DD 12 Ways	DHDMTHODRW120002	DHDMTVODR120002

SPN Prewired

SPN Prewired
(with cable end box)

No. of Ways	IC/OG	DD Cat. No.
6	$2+6$	DHDMSHMLRW06
8	$2+8$	DHDMSHMLRW08
10	$2+10$	DHDMSHMLRW10
12	$2+12$	DHDMSHMLRW12
16	$2+16$	DHDMSHMLRW16

TPN Prewired

Single Door Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	323	223	338	6	6	2	1.6
6	359	259	374	6	6	2	1.6
8	423	323	438	6	6	2	1.6
12	567	467	582	8	8	2	1.6

Knockout Holes (Ø25)

Range

TPN SD - 4, 6, 8 \& 12 Ways

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- Phase/Neutral terminal block for termination of incoming and outgoing wires
- Colored flame retardant Polyamide terminal blocks and FRLS wiring for easy identification of R, Y \& B Phases \& Neutral
- A detachable cassette is provided for safe removal of MCB/RCCB from DB without loosening the internal cable connection of Phase \& Neutral Circuit
- IP 42

Double Door Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	323	223	333	6	6	2	1.6
6	359	259	369	6	6	2	1.6
8	423	323	433	6	6	2	1.6
12	567	467	577	8	8	2	1.6

Knockout Holes (Ø31)

TPN Prewired
(without cable end box)

No. of Ways	IC/OG	DD Cat. No.
4	$8+12$	DHDMTHMKDRA04
6	$8+18$	DHDMTHMKDRA06
8	$8+24$	DHDMTHMKDRA08
12	$8+36$	DHDMTHMKDRA12

TPN Prewired (with Cable End Box)

Range

TPN DD - 4, 6, 8 \& 12 Ways
Specification
IEC 61439-3, IS 13032 \& IS 8623

Features

- Phase/Neutral terminal block for termination of incoming and outgoing wires
- Colored flame retardant Polyamide terminal blocks and FRLS wiring for easy identification of R, Y \& B Phases \& Neutral
- A detachable cassette is provided for safe removal of MCB/RCCB from DB without loosening the internal cable connection of Phase \& Neutral Circuit
- DBs are provided with integral loose wire box in TPN for accommodating extra bunch of wires
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
4	323	223	333	6	6	2	1.6
6	359	259	369	6	6	2	1.6
8	423	323	433	6	6	2	1.6
12	567	467	577	8	8	2	1.6

Knockout Holes (Ø31)

TPN Prewired
(with cable end box)

No. of Ways	IC/OG	DD Cat. No.
4	$8+12$	DHDMTHMLXW04
6	$8+18$	DHDMTHMLXW06
8	$8+24$	DHDMTHMLXW08
12	$8+36$	DHDMTHMLXW12

Per Phase Isolation (PPI) Vertical - 4 Tier

PPI DBs provide earth leakage protection in each phase. In case of leakage fault in one particular phase, only that phase gets isolated while the other two phases do not have power outage.


```
Range
PPI Vertical DB - 4 Tier - 2+8 & 2+12 Ways
Specification
IEC 61439-3, IS 13032 & IS }862
Features
- DBs with phase segregation and separation between incomer and outgoings
- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar for each phase
- With neutral bar, earth bar and cable ties for cable management
- Fully insulated busbar
- With per phase neutral \& earth bar
- Supplied with wire set
- IP 42
```


Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
$2+8$	323	248	338	7	7	6	1.2
$2+12$	395	320	405	7	7	6	1.2

Knockout Holes (Ø31)

Per Phase Isolation (PPI) Vertical - 4 Tier

No. of Ways	$\mathrm{I} / \mathrm{C}+\mathrm{O} / \mathrm{G}$	Regal Grey Cat. No. (DD).
$2+8$	$8+6+24$	DHDPTVPDRW08
$2+12$	$8+6+36$	DHDPTVPDRW12

Per Phase Isolation (PPI) - QVE Series

PPI DBs provide earth leakage protection in each phase. In case of leakage fault in one particular phase, only that phase gets isolated while the other two phases do not have power outage.

Range

TPN - 4, 6 \& 8 Ways

Color

Pearl Ivory \& Regal Grey

Specification

IEC 61439-3, IS 13032 \& IS 8623

Features

- DBs with phase segregation and separation between incomer and outgoings
- Suitable for Flush mounting and Surface mounting
- With 100 A copper busbar for each phase
- With neutral bar, earth bar and cable ties for cable management
- Fully insulated busbar
- Suitable for MCB/RCCB/Isolator as Incomer
- With per phase neutral \& earth bar
- Supplied with wire set
- IP 42

Dimensions (in mm)

No. of Ways	A	B	C	Top	Bottom	Side	Sheet Thickness
$2+4$	323	268	341	6	6	2	1
$2+6$	395	340	413	8	8	2	1
$2+8$	534	479	552	11	11	2	1

Knockout Holes (Ø31)

Per Phase Isolation (PPI) - QVE Series

No. of Ways	I/C + O/G	Regal Grey Cat. No. (DD)
$2+4$	$4+6+12$	DHDPTHPDRW04
$2+6$	$4+6+18$	DHDPTHPDRW06
$2+8$	$4+6+24$	DHDPTHPDRW08

Cable End Box

No. of Ways	Cat No.		
		Single Door	Double Dor
4	SPN	DHDASHOS04	DHDASHOD04
8	SPN	DHDASHOS08	DHDASHOD08
12	SPN	DHDASHOS12	DHDASHOD12
16	SPN	DHDASHOS16	DHDASHOD16
4	TPN - Horizontal	DHDATHOS04	DHDATHOD04
6	TPN - Horizontal	DHDATHOS06	DHDATHOD06
8	TPN - Horizontal	DHDATHOS08	DHDATHOD08
12	TPN - Horizontal	DHDATHOS12	DHDATHOD12
$4 / 8 / 12$	TPN - Vertical	DHDATVOS04	DHDATVOD04
$4 / 8 / 12$	Loadline	DHDATVLS04	DHDATVLD04
$2+8$	PPI	DHDATVTS10	DHDATVTD10
$2+12$	PPI	DHDATVTS14	DHDATVTD14

A. Single Door DB

No. of Ways	Item	Dimensions (in mm)							T (Sheet Thickness)	Cat. No.
		A	B	c	D	E	F	G		
4	SPN	139	100	61	3	89	25	154	1.0	DHDASHOSO4
8		211	100	61	5	161	25	226	1.0	DHDASHOS08
12		283	100	61	7	233	25	298	1.0	DHDASHOS12
16		355	100	61	9	305	25	370	1.2	DHDASHOS16
4	TPN	323	125	66	4	268	37.5	338	1.2	DHDATHOS04
6		359	125	66	6	304	37.5	374	1.2	DHDATHOS06
8		395	125	66	6	340	37.5	410	1.2	DHDATHOS08
12		539	125	66	8	484	37.5	554	1.2	DHDATHOS12
4/8/12	Vertical	350	125	87	7	275	37.5	365	1.2	DHDATVOS04
4/8/12	Loadline	350	125	102	7	275	37.5	365	1.2	DHDATVLS04
$2+8$	PPI	323	125	78	6	248	37.5	338	1.2	DHDATVTS10
$2+12$		395	125	78	7	320	37.5	410	1.2	DHDATVTS14
10	Tier	323	125	78	6	248	37.5	338	1.2	DHDATVTS10
14		395	125	78	7	320	37.5	410	1.2	DHDATVTS14

Dimensions (in mm)

B. Double Door DB

No. of Ways	Item	Dimensions (in mm)								T (Sheet Thickness)	Cat. No.
		A	B	C	D	E	F	G	H		
4	SPN	175	100	74	3	125	25	190	107.5	1.0	DHDASHOD04
8		247	100	74	4	197	25	262	107.5	1.0	DHDASHOD08
12		319	100	74	6	269	25	334	107.5	1.0	DHDASHOD12
16		391	100	74	6	341	25	406	107.5	1.2	DHDASHOD16
4	TPN	251	125	85	4	196	37.5	266	132.5	1.2	DHDATHOD04
6		323	125	85	6	268	37.5	338	132.5	1.2	DHDATHOD06
8		395	125	85	6	340	37.5	410	132.5	1.2	DHDATHOD08
12		534	125	85	8	479	37.5	549	132.5	1.2	DHDATHOD12
4/8/12	Vertical	395	125	98	8	320	37.5	405	130	1.2	DHDATVOD04
4/8/12	Loadline	350	125	130	7	275	37.5	380	130	1.2	DHDATVLD04
$2+8$	PPI	323	125	89	6	248	37.5	333	130	1.2	DHDATVTD10
$2+12$		395	125	89	7	320	37.5	405	130	1.2	DHDATVTD14
10	Tier	323	125	89	6	248	37.5	333	130	1.2	DHDATVTD10
14		395	125	89	7	320	37.5	405	130	1.2	DHDATVTD14

Comb Bus Bar

No. of Ways Three Phase	Capacity of 17.8 mm module	Features	Cat No.
2	6	TP I/C \& TP O/G	DSCCPADBX022
3	12	TP I/C \& TP O/G	DSCCPADBX023
4	15	TP I/C \& TP O/G	DSCCPADBX024
5	10	TP I/C \& TP O/G	DSCCPADBX025
10 SP* 14 SP*	14	SP O/G	DSCCPADBX026

Plug \& Sockets

Description	Cat. No.
20 A DP PLUG ASSEMBLY	DSSPLX0035
20 A DP SOCKET ASSEMBLY	DSSPLX0036
30 A TP PLUG ASSEMBLY	DSSPLX0037
30 A TP SOCKET ASSEMBLY	DSSPLX0038

Rotary Switch

Description	Cat. No.
40 A PHASE-SEL. SWITCH	DSCCPAMCX010
63 A PHASE-SEL. SWITCH	DSCCPAMCX009

Cat. No.	Description	Where used in List
DSCPGMDBX099	P-Channel SPN 12 W Flat Grey	DHDSNVDRZ04040 DHDSNVDRZ04063 DHDPTVPDRW08
DSCPGMDBX100	P-Channel SPN 16 W Flat Grey	DHDPTVODRW04 DHDPTVODRW08 DHDPTVODRW12 HDSNVDRZ06040 DHDSNVDRZ06063 DHDSNVDRZ08040 DHDSNVDRZ08063 DHDPTVPDRW12
DSCPGMDBX105	P-Channel SPN 12 W Flat Ivory	$\begin{aligned} & \text { DHDSNVDPZ04040 } \\ & \text { DHDSNVDPZ04063 } \end{aligned}$
DSCPGMDBX106	P-Channel SPN 16 W Flat Ivory	DHDSNVDPZ06040 DHDSNVDPZ06063 DHDSNVDPZ08040 DHDSNVDPZ08063
DSCPGMDBX126	P-Channel SPN 4 W Curve Grey	DHDPSHODRW04
DSCPGMDBX127	P-Channel SPN 8 W Curve Grey	DHDPSHODRW08 DHDPTHODRW04
DSCPGMDBX128	P-Channel SPN 12 W Curve Grey	DHDPSHODRW12 DHDPTHODRW06
DSCPGMDBX129	P-Channel SPN 16 W Curve Grey	DHDPSHODRW16 DHDPTHODRW08
DSCPGMDBX131	P-Channel TPN 12 W Curve Grey	DHDPTHODRW12
DSCPGMDBX132	P-Channel SPN 4 W Curve Ivory	DHDPSHODPW04
DSCPGMDBX133	P-Channel SPN 8 W Curve Ivory	DHDPSHODPW08 DHDPTHODPW04
DSCPGMDBX134	P-Channel SPN 12 W Curve Ivory	DHDPSHODPW12 DHDPTHODPW06
DSCPGMDBX135	P-Channel SPN 16 W Curve Ivory	DHDPSHODPW16 DHDPTHODPW08
DSCPGMDBX137	P-Channel TPN 12 W Curve Ivory	DHDPTHODPW12

Miscellaneous

Description	Cat. No.
N/L BASE	DSCPGMDBX019
Dummy(Blanking)Plate 18mm	DSCPGMDBX001
KNOB SNAP TYPE GREY	DSCPGMDBX045
KNOB SNAP TYPE PI	DSCPGMDBX046
GREEN INDICATOR SWITCH SMALL	DSCCPAMCX005

Blanking Plate

No. of Ways	Length	Cat No.
$1 P$	18 mm	DSCPGMDBX001

Single Phase Bus Bar

No. of Ways	Cat No.
4	DSCCUPDBP028
6	DSCCUPDBP032
8	DSCCUPDBP029
12	DSCCUPDBP030
16	DSCCUPDBP031

Spare Din Rails

No. of Ways	Length of DIN Rail	Cat No.
4	104 mm	CFEFDBX320
6	140 mm	CFEFDBX459
8	176 mm	CFEFDBX321
12	248 mm	CFEFDBX322
16	320 mm	CFEFDBX323

Spare Neutral Links

No. of Ways	Cat No.
2 P\&S	DSCBRCDBX002
4 SPN	DSCBRCDBX011
6 SPN	DSCBRCDBX090
8 SPN	DSCBRCDBX012
12 SPN	DSCBRCDBX013
16 SPN	DSCBRCDBX014
4 TPN	DSCBRCDBX013
6 TPN	DSCBRCDBX015
8 TPN	DSCBRCDBX016
12 TPN	DSCBRCDBX017

Spare Earth Links

No. of Ways	Cat No.
4 SPN	DSCBRCDBX006
6 SPN	DSCBRCDBX093
8 SPN	DSCBRCDBX007
12 SPN	DSCBRCDBX003
16 SPN	DSCBRCDBX004
4 TPN	DSCBRCDBX003
6 TPN	DSCBRCDBX005
8 TPN	DSCBRCDBX009
12 TPN	DSCBRCDBX008

Ingress Protection
The IP (Ingress Protection) rating given to an enclosure states the degree of protection it offers by means of two digits. A summary of these is shown below, for a more detailed defection, see IEC 60529 2000, BS EN 605291992.

First Digit

Protection against solid foreign objects and access to hazardous parts: The first digit covers protection against penetration by solid objects, which includes hands and tools such as screwdrivers. At the lowest of seven levels, 0 , no protection is offered, either of the equipment itself from damage by intrusion or of a person contacting live or moving parts. At the highest, there shall be no entry of dust.

Second Digit

Protection against ingress of water: The second digit covers the degree of protection against the entry of water, on a progressive scale. For example, number 1 indicates that dripping water shall have no harmful effect, and number 6, that water projected in powerful jets against the enclosure from any direction shall have no harmful effects.
0. No Protection

1. Protected against vertically falling drops of water eg. condensation
2. Protected against direct sprays of water up to 15° from the vertical

3. Protected against sprays of water up to 60° from the vertical

4. Protected against after splashed from all directions -limited ingress permitted

5. Protected against low pressure jets of water from all directions -limited ingress permitted

6. Protected against strong jets of water e.g. for use on ship decks -limited ingress permitted

7. Protected against solid objects over 2.5 mm e.g. tools and wires

8. Protected against solid objects up to 50 mm e.g. accidental touch by hands

9. Protected against solid objects over 1 mm e.g. tools, wires and small wires
10. Protected against dust -limited ingress, no harmful deposits
11. Totally protected against dust.

The letter X can be used in place of the first or second digit to indicate that tests have either not been made or are not applicable.

Category Of Duty

The category of duty defines the basic type of circuit and switching capability of the device, and selection should be made accordingly.
Utilisation Category Typical Applications
AC 20/DC 20 Connecting and disconnecting under no-load. Assumes all switching operations are carried out by other capable devices before this device is operated.
AC 21/DC 21 Switching of resistive loads including moderate overloads. Suitable for purely resistive type loads devices can switch 150% of its rated current under fault conditions

AC 22/DC 22 Switching of mixed resistive / inductive loads, including moderate overloads. Suitable for mixed resistive / inductive loads. Devices can switch 300\% of its rated current under fault conditions.

AC 23/DC 23 Switching of highly inductive loads. Devices complying with AC 23/DC 23 are provided mainly as back-up to other means of switching. e.g. contacts. Intheevent offailure offunctional devices, anAC23/DC23type device can safety interruptastalled motorcurrent. Where devices are the only means of controlling individual motors, they should comply with the requirements of appendix A of the standard. (IEC 60947-3)

Earthing System

TN-C system

In this grid system, the neutral point of the transformer supplying the energy is directly grounded. The neutral conductor and protective conductor are routed to the consumer system in one conductor (PEN). A three-phase power supply consists of four conductors: L1, L2, L3, and PEN.

TN-S system

In this grid system, one point - usually the neutral point - of the transformer supplying the energy is usually directly grounded. The neutral conductor (N) and protective conductor (PE) are routed to the consumer system in separate conductors. A three-phase power supply consists of five conductors: L1, L2, L3, N, and PE.

Important Definitions

1. Ue = Rated Operational Voltage

The normal line-to-line voltage (3 Phase) or line to neutral voltage (1 Phase) of the system should not exceed (Ue)

2. Ui = Rated Insulation Voltage

The voltage on which the dielectric properties have conventionally been based using tests at high voltage and mains frequency.
3. $\operatorname{Uimp}=$ Rated impulse withstand voltage The voltage on which clearance distances are based. The value of transient peak voltage the circuit breaker can withstand from switching surges or lighting strikes imposed on the supply. e.g. Uimp $=8 \mathrm{kV}$, Tested @8 kV peak with $1.2 / 50 \mathrm{~m}(\mathrm{~ms}) \mathrm{S}$ impulse wave

TT system

In this grid system, the grounded point of the transformer is routed to the system solely as a neutral conductor. The parts of the electrical system are connected to a local grounding system that is separated from the grounded point of the transformer. The neutral conductor and the local protective conductor are routed to the consumer system in separate conductors. A three- phase power supply consists of five conductors: L1, L2, L3, N, and local PE.

IT system

In this grid system, the neutral point of the transformer supplying the energy is not grounded, or only grounded via a high impedance. The parts of the electrical system are connected to a local grounding system that is separated from the grounded point of the transformer. If a neutral conductor is also routed from the neutral point of the transformer supplying the energy, this is routed separately from the local protective conductor. A three-phase power supply consists of four or five conductors: L1, L2, L3, if appropriate, N, and local PE.

4. In = Rated Current

The current which the circuit breaker will carry continuously under specified conditions and on which the time / current characteristics are based.
Unless otherwise slated (In) is based on a reference ambient temperature of 30° Centigrade.
5. Icu-Rated Ultimate Short Circuit Breaking Capacity in kA
The calculated prospective fault current at the incoming terminals of the circuit breaker should not exceed (Icu).
Exception: Using back-up protection as specified by the manufacturer.

6. Ics-Rated Service Short Circuit Breaking Capacity in kA

The maximum level of fault current operation after which further service is assured without loss of performance.

7. Icw-Rated Short-time Withstand Current

Circuit breakers of utilisation category ' B ' have a short-time delay allowing time-graded selectivity between circuit breakers in series.
(Icw) is the current the circuit breaker will withstand for the maximum short-time delay time. Preferred times are $0.05,0.1,0.25,0.5$ and 1.0 second.

Terminology Related to SPD

General Operations of SPD

The Surge Protection Devices (SPD) is a device used to limit transitory overvoltage surges and to divert impulse currents away. They contain at least one non-linear component (such as varistor and/or GDT).
They are installed in parallel to the load:

- during normal operation (in absence of surges), SPD shall have no influence on the system to which it is applied. SPD acts as an open circuit and maintains insulation between the line and earth.
- when surge occurs, the SPD lowers its impedance in some nanoseconds and diverts the surge current. SPD behaves as a closed circuit, the surge voltage is short circuited. The overvoltage is limited to an admissible value for the electrical equipment located downstream.
- after surge occurrence, the SPD recovers its high impedance and behaves as an open circuit.

Discharge Current Waveform

Wave 8/20: Current impulse with a 8μ s rising edge (from 10-90\% of maximum value) and a time to decrease to half value of $20 \mu \mathrm{~s}$. It is used to represent indirect lightning strike. They are used to test Type-2 SPD.
Wave 10/350: Current impulse with a 10μ s rising edge (from 10-90\% of maximum value) and a time to decrease to half value of $350 \mu \mathrm{~s}$. It is used to represent direct lightning strike. They are used to test Type-1 SPD

Maximum Continuous Operating Voltage (Uc/Ucpv)- The maximum continuous operating voltage Uc is the maximum r.m.s/ dc voltage which may be applied continuously to the SPD. It has to take into account the network nominal voltage Un plus the possible tolerances.

Nominal discharge current (In)- This is the discharge current with $8 / 20 \mu \mathrm{~s}$ waveform that the Class 2 SPD is able to divert (towards earth) at least 15 consecutive times, without deteriorating.
The higher it is, the longer the life of the SPD will be.

Impulse current (limp)- The impulse current (limp), used in Class I test is the maximum impulse 10/350 μ s current a surge protector can withstand without destruction. This test simulates the effect, of a direct lightning strike on an installation.

Maximum Discharge current (Imax)- The maximum discharge current (Imax), applicable to Type 2 SPD, is the maximum impulse current $8 / 20 \mu \mathrm{~s}$ a surge protector can withstand without destruction.
The higher the Imax is, for the same In, the safer the SPD is working, far away from its performance limits.

Protection Level (Up)- The residual voltage that is measured across the terminal of the SPD when In is applied. Surge protection needs to be selected such that their voltage protection level (Up) is lower than the impulse withstand capability of the equipment to be protected.

Follow-through current (If)- Current supplied by the electrical supply grid, which flows through the SPD following an impulse current.

Follow current interrupting rating (Ifi): It is a parameter for spark-gaps and gas discharge tubes and does not concern varistors. Ifi is the rms-value of

the follow current, which can be interrupted by the SPD under Uc.

Common mode surge: Common mode voltage surges occur between the live parts and the earth: phase/earth or neutral/earth. They are especially dangerous for devices whose frame is earthed due to the risk of dielectric breakdown.

Differential mode surge: Differential mode voltage surges circulate between live conductors: Phase to phase or phase to neutral. They are especially dangerous for electronic equipment, sensitive computer equipment, etc.

PV System Architecture

A photovoltaic cell is the basic building block that converts solar radiation into electricity. The most common type of cell is made from silicon doped with minute quantities of boron, phosphorous, gallium, arsenic, or other materials. Each cell develops about 0.5 Vdc to 0.7 Vdc voltage and a current of $30 \mathrm{~mA} / \mathrm{cm}^{2}$. The maximum amperage of the cell is proportional to its surface area, and depends on the intensity of the light.

A PV module is a grouping of cells. For example, modules with 36 cells are quite common, producing 18 to 22 volt for a 12-volt nominal output. PV module is the smallest completely environmentally protected assembly of interconnected PV cells

Several modules mechanically and electrically connected form a PV panel, that is a common structure which can be anchored to the ground or to a building

A PV string is a grouping of modules wired in series. A series string can then be used on its own or paralleled with other series strings, either to charge batteries or feed the utility grid.

A PV array is a group of strings connected in parallel to generate higher current and consequently higher power.

The electricity generated by the solar system is then fed into a power inverter (PV inverter) that converts and regulates the DC source into usable AC power. The AC power can then be used locally for specific remote equipment, back-up power in residential and commercial places or fed directly back into the power grid and used as environmentally clean energy.

Certifications

Manufacturing plants compliant to ISO 9001: 2015 ; ISO 14001:2004; OHSAS 18001:2007
Accredited by national / international bodies - BIS, CPRI, DEKRA, INTERTEK, TUV, UL
IS/IEC 60898-1 / EN 60898-1
IS 12640-1 : 2000 / IEC 61008-1 / EN 61008-1
IS 12640-2 : 2001 / IEC 61009-1 / EN 61009-1
IS/IEC 60947-3 / IEC 60947-3
IEC 61643-11 / EN 50539-11
...and in the process of attaining other International certificatioins

Regional \& Branch Offices:
NORTH - REGIONAL OFFICE: Corporate Office: QRG Towers, 2D, Sector-126, Expressway, Noida-201304, Tel: 0120-3331000, Delhi: 011-47676700, 23888200, Chandigarh: 0172-4232400-401, Dehradun: 0135-6670202, Haldwani: 05946-222935/222933, Noida / Haryana: 0120-3331000, Ludhiana: 0161-4676000/24, Amritsar: 0183-5202400/401, Jammu: 0191-2478330, 2479330, Sri Nagar: 0194-2459248, Jaipur: 0141-4211000, 4211011, Jodhpur: 9214201640/41, Lucknow: 0522-4921600/4921649, Kanpur: 0512-6710400

EAST - REGIONAL OFFICE: Kolkata: ICC Tower, 5th Floor, 4 India Exchange Place, Kolkata-700001, Tel: 033-40129851/52, Bhubaneshwar: 0674-6668101/102/103/104, Guwahati: 0361-2458923, 2134521, Siliguri: 0353-2525907, Ranchi: 0651-2244861, 2244862, 2244864, 2244868, 2244869, Jamshedpur: 0657-6542492, 09234369436, Patna: 0612-2207221, 2207222, 2207223, 2655518

WEST - REGIONAL OFFICE: Mumbai: 1271, Solitaire Corporate Park, Bldg. No. 12, 7th Floor, Andheri - Ghatkopar Link Road, Chakala, Andheri (East), Mumbai- 400093. Tel: 022-67298600-602, Ahmedabad: 079-40061111, 40060738/740, Indore: 0731-4219444/4219422, 0731-2572340, Rajkot: 0281-2481112, 2921212, Nagpur: 0712-2240932, 2242692, 2242699 Pune: 020-26056175-76, Raipur: 0771-4243400/01, Surat: 0261-2350137, 9979890137, Jabalpur: 0761-4064491, Bhopal: 07554271544, 0755-4011025,

SOUTH - REGIONAL OFFICE: Chennai: Sigapi Achi Building, No. 18 / 3, 6th Floor, Rukmani Lakshmipathy Road, Egmore, Chennai-600008, Tel: 044-42280600, 605, Bangalore: 080-49075000, Coimbatore: 0422-4550200/282, Hyderabad: 040-27533372, 27533355, 27533632, Cochin: 0484-4099000, Calicut: 0495-4019193/4/5, Trivandrum: 0471-4015323, Vizag: 0891-6514339, Vijayawada: 0866-2546161/62/67/68/69, Madurai: 0452-4267000, Hubli: 0836-4248660, Trichy: 0431-4041005/06

Havells India Ltd.

Corp Office: QRG Towers, 2D, Sector-126, Expressway, Noida-201304 (U.P.)
Ph. +91-120-3331000, Email:marketing@havells.com, www.havells.com
Consumer Care No.: 1800110303 (Toll free), 18001031313 (All Connection), 011-4166 0303 (Landline)
Join us on Facebook at www.facebook.com/havells and share your ways to save planet!
CIN - L31900DL1983PLC016304
Copyright Subsists. Imitation of trade dress, graphics and color scheme of this document is a punishable offence.

[^0]: *Also available in 130 Vdc

[^1]: " B " series MCB is used for all Lighting Applications

[^2]: Note: (i) MCBs \& Accessories Should Be Selected And Purchased Separately
 (ii) For Any Other Configuration Contact Us
 (iii) For Appropriate MCCB Price, Please see Havells IP Price List

